Abstract:
In various examples, a system includes a power generating device configured to generate and transfer power to an electrical device. A sterilizable vessel is configured to accommodate the electrical device. The vessel is configured to allow power to be at least partially wirelessly transferred from the power generating device, through the vessel, and to the electrical device. In other examples, a method includes wirelessly powering and/or charging an electrical device disposed within a sterilizable vessel.
Abstract:
In various examples, a system for wirelessly transmitting power using resonant magnetic field power transfer includes a device including at least one component to be wirelessly powered. The device includes an elongate shaft and a capture element including a capture coil. A source element for wirelessly supplying power to the device includes a source coil disposed around an opening. The opening is sized to allow the elongate shaft of the device to fit therein. The source is located proximate a surgical access point, wherein, with insertion of the elongate shaft within the opening of the source for surgical access, the capture coil is disposed sufficiently proximate the source coil to allow power to be wirelessly transmitted from the source coil to the capture coil to power the at least one component of the device.
Abstract:
In various examples, a system includes a power generating device configured to generate and transfer power to an electrical device. A sterilizable vessel is configured to accommodate the electrical device. The vessel is configured to allow power to be at least partially wirelessly transferred from the power generating device, through the vessel, and to the electrical device. In other examples, a method includes wirelessly powering and/or charging an electrical device disposed within a sterilizable vessel.
Abstract:
In various examples, an apparatus includes a neurostimulation interconnection apparatus including an elongate lead body including a lead proximal end and a lead distal end. The lead proximal end includes a first connector portion. A stimulation device includes a header. The header includes a second connector portion including a shape complementary to a shape of the first connector portion. The first connector portion is mateably engageable with the second connector portion, wherein one of the first connector portion and the second connector portion includes a plurality of pins and the other of the first connector portion and the second connector portion includes a plurality of sockets. There are an equal number of sockets and pins, wherein, with the first connector portion mateably engaged with the second connector portion, the pins align and electrically couple with the sockets.
Abstract:
In various examples, an apparatus is configured for targeted placement of a lead body within a patient. The lead body includes at least one distal electrode. The apparatus includes a needle including a lumen sized to accommodate the lead body within the lumen. A stylet is insertable within the needle, wherein at least one of the needle and the stylet includes at least one imageable marker corresponding in size, shape, and location to the at least one distal electrode of the lead body. The at least one imageable marker is configured to allow a user to determine placement within the patient of the at least one distal electrode of the lead body prior to implantation of the lead body within the patient.
Abstract:
In various examples, a system includes a power generating device configured to generate and transfer power to an electrical device. A sterilizable vessel is configured to accommodate the electrical device. The vessel is configured to allow power to be at least partially wirelessly transferred from the power generating device, through the vessel, and to the electrical device. In other examples, a method includes wirelessly powering and/or charging an electrical device disposed within a sterilizable vessel.
Abstract:
In various examples, a system includes a power generating device configured to generate and transfer power to an electrical device. A sterilizable vessel is configured to accommodate the electrical device. The vessel is configured to allow power to be at least partially wirelessly transferred from the power generating device, through the vessel, and to the electrical device. In other examples, a method includes wirelessly powering and/or charging an electrical device disposed within a sterilizable vessel.
Abstract:
In various examples, a system for wirelessly transmitting power using resonant magnetic field power transfer includes a device including at least one component to be wirelessly powered. The device includes an elongate shaft and a capture element including a capture coil. A source element for wirelessly supplying power to the device includes a source coil disposed around an opening. The opening is sized to allow the elongate shaft of the device to fit therein. The source is located proximate a surgical access point, wherein, with insertion of the elongate shaft within the opening of the source for surgical access, the capture coil is disposed sufficiently proximate the source coil to allow power to be wirelessly transmitted from the source coil to the capture coil to power the at least one component of the device.
Abstract:
In various examples, an apparatus is configured for targeted placement of a lead body within a patient. The lead body includes at least one distal electrode. The apparatus includes a needle including a lumen sized to accommodate the lead body within the lumen. A stylet is insertable within the needle, wherein at least one of the needle and the stylet includes at least one imageable marker corresponding in size, shape, and location to the at least one distal electrode of the lead body. The at least one imageable marker is configured to allow a user to determine placement within the patient of the at least one distal electrode of the lead body prior to implantation of the lead body within the patient.