摘要:
A coated article includes a low emissivity (low-E) coating on a glass substrate. The low-E coating includes at least one infrared (IR) reflecting layer of a material such as silver, gold, or the like, and at least one high refractive index layer of or including NbBi. The high index layer (e.g., NBBiOx) is designed and deposited so as to be amorphous in the low-E coating, so as to better withstand optional heat treatment (HT) such as thermal tempering. The high index layer may be a transparent dielectric high index layer.
摘要:
Certain example embodiments relate to Ni-inclusive ternary alloy being provided as a barrier layer for protecting an IR reflecting layer comprising silver or the like. The provision of a barrier layer comprising nickel, chromium, and/or molybdenum and/or oxides thereof may improve corrosion resistance, as well as chemical and mechanical durability. In certain examples, more than one barrier layer may be used on at least one side of the layer comprising silver. In still further examples, a NixCryMoz-based layer may be used as the functional layer, rather than or in addition to as a barrier layer, in a coating.
摘要:
A coated article includes a coating, such as a low emissivity (low-E) coating, supported by a substrate (e.g., glass substrate). The coating includes at least one dielectric layer including tin oxide that is doped with another metal(s). The coating may also include one or more infrared (IR) reflecting layer(s) of or including material such as silver or the like, for reflecting at least some IR radiation. In certain example embodiments, the coated article may be heat treated (e.g., thermally tempered, heat bent and/or heat strengthened). Coated articles according to certain example embodiments of this invention may be used in the context of windows, including monolithic windows for buildings, IG windows for buildings, etc.
摘要:
Certain example embodiments relate to Ni-inclusive ternary alloy being provided as a barrier layer for protecting an IR reflecting layer comprising silver or the like. The provision of a barrier layer comprising nickel, chromium, and/or molybdenum and/or oxides thereof may improve corrosion resistance, as well as chemical and mechanical durability. In certain examples, more than one barrier layer may be used on at least one side of the layer comprising silver. In still further examples, a NixCryMoz-based layer may be used as the functional layer, rather than or in addition to as a barrier layer, in a coating.
摘要:
Certain example embodiments relate to a coated article including at least one infrared (IR) reflecting layer of a material such as silver or the like in a low-E coating, and methods of making the same. In certain cases, at least one layer of the coating is of or includes nickel and/or titanium (e.g., NixTiyOz). The provision of a layer including nickel titanium and/or an oxide thereof may permit a layer to be used that has good adhesion to the IR reflecting layer, and reduced absorption of visible light (resulting in a coated article with a higher visible transmission). When a layer including nickel titanium oxide is provided directly over and/or under the IR reflecting layer (e.g., as a barrier layer), this may result in improved chemical and mechanical durability. Thus, visible transmission may be improved if desired, without compromising durability; or, durability may simply be increased.
摘要:
A coated article includes a coating, such as a low emissivity (low-E) coating, supported by a substrate (e.g., glass substrate). The coating includes at least one dielectric layer including tin oxide that is doped with another metal(s). The coating may also include one or more infrared (IR) reflecting layer(s) of or including material such as silver or the like, for reflecting at least some IR radiation. In certain example embodiments, the coated article may be heat treated (e.g., thermally tempered, heat bent and/or heat strengthened). Coated articles according to certain example embodiments of this invention may be used in the context of windows, including monolithic windows for buildings, IG windows for buildings, etc.
摘要:
Certain example embodiments relate to a coated article including at least one infrared (IR) reflecting layer of a material such as silver or the like in a low-E coating, and methods of making the same. In certain cases, at least one layer of the coating is of or includes nickel and/or titanium (e.g., NixTiyOz). The provision of a layer including nickel titanium and/or an oxide thereof may permit a layer to be used that has good adhesion to the IR reflecting layer, and reduced absorption of visible light (resulting in a coated article with a higher visible transmission). When a layer including nickel titanium oxide is provided directly over and/or under the IR reflecting layer (e.g., as a barrier layer), this may result in improved chemical and mechanical durability. Thus, visible transmission may be improved if desired, without compromising durability; or, durability may simply be increased.
摘要:
Certain example embodiments relate to Ni-inclusive ternary alloy being provided as a barrier layer for protecting an IR reflecting layer comprising silver or the like. The provision of a barrier layer comprising nickel, chromium, and/or molybdenum and/or oxides thereof may improve corrosion resistance, as well as chemical and mechanical durability. In certain examples, more than one barrier layer may be used on at least one side of the layer comprising silver. In still further examples, a NixCryMoz-based layer may be used as the functional layer, rather than or in addition to as a barrier layer, in a coating.
摘要:
Certain example embodiments of this invention relate to a coated article including a low-E coating. In certain example embodiments, a titanium oxide inclusive bottom layer stack and/or a NiCr-based layer(s) are designed to improve b* coloration values and/or transmission of the coated article. These layer stack portions also are advantageous in that they permit a double-silver coated article to achieve (i) an LSG value (Tvis/SHGC) of at least 2.0, (ii) an SHGC value of no greater than 35%, more preferably no greater than 33, 32 or 30%, and (iii) a U-value (BTU h−1 ft−2 ° F.−1) (e.g., x=12 mm) of no greater than 0.30, more preferably no greater than 0.28 or 0.25. In certain example embodiments, the titanium oxide based layer may be an interlayer provided in a bottom portion of the layer stack between first and second layers comprising silicon nitride. Coated articles according to certain example embodiments of this invention may be used in the context of insulating glass (IG) window units, other types of windows, or in any other suitable application.
摘要:
Certain example embodiments relate to Ni-inclusive ternary alloy being provided as a barrier layer for protecting an IR reflecting layer comprising silver or the like. The provision of a barrier layer comprising nickel, chromium, and/or molybdenum and/or oxides thereof may improve corrosion resistance, as well as chemical and mechanical durability. In certain examples, more than one barrier layer may be used on at least one side of the layer comprising silver. In still further examples, a NixCryMoz-based layer may be used as the functional layer, rather than or in addition to as a barrier layer, in a coating.