Abstract:
A method for arranging nanotube elements within nanotube fabric layers and films is disclosed. A directional force is applied over a nanotube fabric layer to render the fabric layer into an ordered network of nanotube elements. That is, a network of nanotube elements drawn together along their sidewalls and substantially oriented in a uniform direction. In some embodiments this directional force is applied by rolling a cylindrical element over the fabric layer. In other embodiments this directional force is applied by passing a rubbing material over the surface of a nanotube fabric layer. In other embodiments this directional force is applied by running a polishing material over the nanotube fabric layer for a predetermined time. Exemplary rolling, rubbing, and polishing apparatuses are also disclosed.
Abstract:
Methods for passivating a carbonic nanolayer (that is, material layers comprised of low dimensional carbon structures with delocalized electrons such as carbon nanotubes and nanoscopic graphene flecks) to prevent or otherwise limit the encroachment of another material layer are disclosed. In some embodiments, a sacrificial material is implanted within a porous carbonic nanolayer to fill in the voids within the porous carbonic nanolayer while one or more other material layers are applied over or alongside the carbonic nanolayer. Once the other material layers are in place, the sacrificial material is removed. In other embodiments, a non-sacrificial filler material (selected and deposited in such a way as to not impair the switching function of the carbonic nanolayer) is used to form a barrier layer within a carbonic nanolayer. In other embodiments, carbon structures are combined with and nanoscopic particles to limit the porosity of a carbonic nanolayer.
Abstract:
A process may include forming a mask directly on and above a region selected as an initial semiconductor fin on a substrate and reducing the initial semiconductor fin forming a semiconductor fin that is laterally thinned from the initial semiconductor fin. The process may be carried out causing the mask to recede to a greater degree in the lateral direction than the vertical direction. In various embodiments, the process may include removing material from the fin semiconductor to achieve a thinned semiconductor fin, which has receded beneath the shadow of the laterally receded mask. Electronic devices may include the thinned semiconductor fin as part of a semiconductor device.
Abstract:
An intermediate semiconductor structure that comprises a substrate and at least one undercut structure formed in the substrate is disclosed. The undercut feature may include a vertical opening having a lateral cavity therein, the vertical opening extending below the lateral cavity. The lateral cavity may include faceted sidewalls.
Abstract:
Pitch multiplied and non-pitch multiplied features of an integrated circuit, e.g., features in the array, interface and periphery areas of the integrated circuit, are formed by processing a substrate through a mask. The mask is formed by patterning a photoresist layer which simultaneously defines mask elements corresponding to features in the array, interface and periphery areas of the integrated circuit. The pattern is transferred to an amorphous carbon layer. Sidewall spacers are formed on the sidewalls of the patterned amorphous carbon layer. A layer of protective material is deposited and then patterned to expose mask elements in the array region and in selected parts of the interface or periphery areas. Amorphous carbon in the array region or other exposed parts is removed, thereby leaving a pattern including free-standing, pitch multiplied spacers in the array region. The protective material is removed, leaving a pattern of pitch multiplied spacers in the array region and non-pitch multiplied mask elements in the interface and periphery areas. The pattern is transferred to a hard mask layer, through which an underlying substrate is etched.
Abstract:
The present disclosure includes various methods of contact embodiments. One such method embodiment includes forming a trench in an insulator stack material of a particular thickness. This method includes forming a filler material in the trench and removing the filler material to a particular depth that is less than the particular thickness of the insulator stack material. This method also includes forming a spacer material on at least one side surface of the trench to the particular depth of the filler material and forming a conductive material in the trench over the filler material.
Abstract:
The invention includes methods of forming semiconductor constructions and methods of forming pluralities of capacitor devices. An exemplary method of the invention includes forming conductive material within openings in an insulative material to form capacitor electrode structures. A lattice is formed in physical contact with at least some of the electrode structures, a protective cap is formed over the lattice, and subsequently some of the insulative material is removed to expose outer surfaces of the electrode structures. The lattice can alleviate toppling or other loss of structural integrity of the electrode structures, and the protective cap can protect covered portions of the insulative material from the etch. After the outer sidewalls of the electrode structures are exposed, the protective cap is removed. The electrode structures are then incorporated into capacitor constructions.
Abstract:
The invention comprises methods of forming a conductive contact to a source/drain region of a field effect transistor, and methods of forming local interconnects. In one implementation, a method of forming a conductive contact to a source/drain region of a field effect transistor includes providing gate dielectric material intermediate a transistor gate and a channel region of a field effect transistor. At least some of the gate dielectric material extends to be received over at least one source/drain region of the field effect transistor. The gate dielectric material received over the one source/drain region is exposed to conditions effective to change it from being electrically insulative to being electrically conductive and in conductive contact with the one source/drain region. Other aspects and implementations are contemplated.
Abstract:
An electrical device includes a substrate; first and second active areas; first and second word lines disposed in a first plane; first and second bit lines in a second plane and in electrical communication with first and second active areas; and a reference line disposed in a third plane. A nanotube element disposed in a fourth plane is in electrical communication with first and second active areas and the reference line via electrical connections at a first surface of the nanotube element. The nanotube element includes first and second regions having resistance states that are independently adjustable in response to electrical stimuli, wherein the first and second regions nonvolatilely retain the resistance states. Arrays of such electrical devices can be formed as nonvolatile memory devices. Methods for fabricating such devices are also disclosed.
Abstract:
A process may include first etching a trench isolation dielectric through a dielectric hard mask that abuts the sidewall of a fin semiconductor. The first etch can be carried out to expose at least a portion of the sidewall, causing the dielectric hard mask to recede to a greater degree in the lateral direction than the vertical direction. The process may include second etching the fin semiconductor to achieve a thinned semiconductor fin, which has receded beneath the shadow of the laterally receded hard mask. The thinned semiconductor fin may have a characteristic dimension that can exceed photolithography limits. Electronic devices may include the thinned semiconductor fin as part of a field effect transistor.