Abstract:
A method of compensating errors in a coordinate measuring machine adapted for determination of at least one spatial coordinate of a measurement point on an object to be measured. The method comprises measuring a distance from the first reference element to the first structural component, wherein the measured distance indicates a displacement or a deformation of the first structural component, defining a dynamic model with a first set of state variables, the state variables being related to a set of physical properties of the reference module and representing an actual state of the reference module, deriving the actual state of the reference module by a calculation based on the dynamic model, and deducing compensation parameters based on the actual state.
Abstract:
A coordinate measuring machine (CMM) having a belt drive unit for an elongated axis element of the CMM, the belt drive unit comprising a belt, the ends of which are clamped on the elongated axis element, a pulley unit, comprising a drive pulley and two idler pulleys, wherein the belt entangles the drive pulley and the idle pulleys in an omega-shaped manner, and wherein the pulley unit is configured to cause a relative linear movement between the axis element and the pulley unit, wherein a damping layer is disposed adjacent to the belt.
Abstract:
A hexapod CMM or hexapod-like CMM has a base structure and a movable structure connected to each other by at least three telescopically extendable legs via spherical joints. Each of the telescopically extendable legs comprises a linear first member and a linear second member having countersliding surfaces and are designed in such a way that allows a relative, linear movement of the first linear member and the second linear member. Further each of the telescopically extendable legs has an air cushioning mechanism, which comprises at least one air supply system connected to at least one source of compressed air and having at least one air escape. The air escape is arranged in such a way that compressed air escaping the air escape flows into a gap between the countersliding surfaces of the at least two linear members of the leg cushioning the two linear members against each other.
Abstract:
A method for providing static and dynamic position information of a designated point of a measuring device having a surface and a structure that includes the designated point and being arranged moveable relatively to the surface. The method includes defining a model for representing an actual position of the designated point relative to the surface and deriving the actual position of the designated point by a calculation based on the defined model. At least two cells are used to model the structure. The at least two cells are linearly arranged in a linear extension direction. At least one of the cells is a variable cell of a set of at least one variable cell and exhibits variable elongation as to the extension direction. An actual elongation of the at least one variable cell is set to model a positional change, particularly in linear extension direction, of the designated point.
Abstract:
Embodiments of the invention include a method for compensating a force at a probe element of a probing unit. The probing unit being attached to and moved along a defined moving path with a number of moving points by a coordinate measuring machine for approaching a measuring point at an object. The probing unit comprises an actuator which is arranged and designed in such manner that a force is applicable to the probe element with respect to at least one actuating direction in variable and defined manner, the force depending on an applied actuating signal. Movement information about an expected movement of the probing unit is received, the movement information provides information about an expected displacement behaviour of the probe element relative to the probing unit due to induced forces emerging by moving the probing unit.
Abstract:
A method for providing dynamic state information for a coordinate measuring machine that includes a base, a probe head, a machine structure linking the probe head to the base and a drive mechanism that moves the probe head. A dynamic model with first state variables represents an actual state of physical properties of the coordinate measuring machine. The first state variables are provided in a database and the actual state of the coordinate measuring machine is determined using the dynamic model. The state variables are monitored and, based thereon, the change of the state variables is determined. Updated, second state variables are set regarding the determined change of the first state variables. The dynamic model is updated using the second state variables in place of the first state variables, wherein the actual state of the coordinate measuring machine is calculated based on the second state variables.
Abstract:
A computer program product for numerically correcting an endpoint position of a Coordinate Measuring Machine (CMM) implemented on a computing unit, receiving as input temporally resolved information from a set of sensors attached to or integrated into the CMM, and to a method for numerically correcting an endpoint position of a CMM, wherein errors between a targeted endpoint position and an actual endpoint position reached during a measurement process are numerically compensated through the use of the computer program product.
Abstract:
Method for providing avoiding of excitations of oscillations of a measuring machine and/or for reducing or damping such oscillations by actively controlling a driving unit of the measuring machine or actively controlling an actuation of an additionally attached actuator. The method using information about an actual state of the measuring device, the actual state is derived based on a dynamic model and/or by use of a suitable sensor unit. A state controller, an actuator or a frequency-filtering element are used for counteracting or preventing oscillations.
Abstract:
A method for providing dynamic state information for a coordinate measuring machine that includes a base, a probe head, a machine structure with structural components linking the probe head to the base and a drive mechanism that moves the probe head relative to the base. A dynamic model is defined with actual state variables related to physical properties representing an actual state of the coordinate measuring machine. The actual state is derived by a calculation based on the dynamic model. A filtering process using the dynamic model includes deriving prediction variables based on the state variables that describe an expected proximate state of the coordinate measuring machine, measuring at least one of the state variables and determining observables, deriving successive state variables by comparing the prediction variables with the observables and updating the dynamic model using the successive state variables as the actual state variables.