Abstract:
An engine system may include: an engine including cylinders that generate a driving torque by combusting fuel; a first intake manifold connected to an intake line through which flows intake air into some of the plurality of cylinders; a second intake manifold supplying the intake air to the other cylinders of the plurality of cylinders through the first intake manifold; a first exhaust manifold connected to some cylinders that are connected to the first intake manifold; a second exhaust manifold connected to some other cylinders that are connected to the second intake manifold; a recirculation line branched from the second exhaust manifold to be coupled to the second intake manifold; a recirculation inlet valve disposed at a point at which the recirculation line and the second exhaust manifold are joined; and a manifold connection valve disposed on an intake line between the first intake manifold and the second intake manifold.
Abstract:
A control apparatus of an engine having a turbocharger may include the engine generating power by combustion of a fuel, the turbocharger including a turbine operated by exhaust gas of the engine and a compressor connected to the turbine by a rotating shaft, and thus supercharging air to a combustion chamber provided in the engine by the compressor, a detecting sensor detecting pre-ignition in the combustion chamber of the engine, and a controller controlling supercharging pressure supplied to the combustion chamber by using a required torque, ignition timing of the combustion chamber, and an air-fuel ratio, and thus controlling the pre-ignition in the combustion chamber, when the pre-ignition in the combustion chamber may be detected by the detecting sensor.
Abstract:
An control apparatus and method for an engine having a turbocharger may include determining a load condition of the engine by a controller, and opening and closing an intake valve, a throttle valve, and a wastegate valve by the controller according to the load condition of the engine, where a combustion chamber generates power by combusting a fuel, an intake valve adjusts an air/fuel mixed gas flowed into the combustion chamber, a continuously variable valve timing apparatus advances or retards an opening/closing timing of the intake valve, a turbocharger having a turbine and a compressor compressing air flowed into the combustion chamber, a throttle valve adjusting air supplied to the combustion chamber, a wastegate valve adjusting the exhaust gas flowed into the turbine, and a controller controlling the intake valve, the throttle valve, and the wastegate valve according to a load region of the engine.
Abstract:
An engine system may include an engine having an intake line flowing an intake gas supplied to the combustion chambers; an intake manifold; a throttle valve provided at a front of the intake manifold and controlling an air amount supplied to the combustion chamber; an electric supercharger provided at the throttle valve and including a motor and an electric compressor operated by the motor to supply the supercharged air to the combustion chamber; an exhaust gas processing device purifying an exhaust gas generated in the combustion chamber; and an exhaust gas recirculation device including a recirculation line branched from the downstream portion of the exhaust gas processing device and joined to the intake line of the upstream portion of the electric compressor, an EGR cooler mounted at the recirculation line, and an EGR valve mounted at a part where the recirculation line and the intake line are joined.
Abstract:
A control apparatus of an engine having a turbocharger may include the engine generating power by combustion of a fuel, the turbocharger including a turbine operated by exhaust gas of the engine and a compressor connected to the turbine by a rotating shaft, and thus supercharging air to a combustion chamber provided in the engine by the compressor, a detecting sensor detecting pre-ignition in the combustion chamber of the engine, and a controller controlling supercharging pressure supplied to the combustion chamber by using a required torque, ignition timing of the combustion chamber, and an air-fuel ratio, and thus controlling the pre-ignition in the combustion chamber, when the pre-ignition in the combustion chamber may be detected by the detecting sensor.
Abstract:
An engine system may include: an engine including cylinders that generate a driving torque by combusting fuel; a first intake manifold connected to an intake line through which flows intake air into some of the plurality of cylinders; a second intake manifold supplying the intake air to the other cylinders of the plurality of cylinders through the first intake manifold; a first exhaust manifold connected to some cylinders that are connected to the first intake manifold; a second exhaust manifold connected to some other cylinders that are connected to the second intake manifold; a recirculation line branched from the second exhaust manifold to be coupled to the second intake manifold; a recirculation inlet valve disposed at a point at which the recirculation line and the second exhaust manifold are joined; and a manifold connection valve disposed on an intake line between the first intake manifold and the second intake manifold.
Abstract:
A method for controlling an exhaust gas recirculation (EGR) system which is provided with an intake throttle valve and an EGR valve driven by a motor may include detecting an engine speed and an amount of intake air for each cylinder of an engine while the engine is operating, determining an amount of air flow supplied to the engine based on the engine speed and the amount of intake air for each cylinder, determining an equivalent cross-section of the EGR valve based on the amount of air flow, determining an opening angle of the EGR valve based on the engine speed, the amount of intake air for each cylinder, the amount of air flow, and the equivalent cross-section of the EGR valve, and controlling the EGR valve according to the opening angle of the EGR valve.
Abstract:
An control apparatus and method for an engine having a turbocharger may include determining a load condition of the engine by a controller, and opening and closing an intake valve, a throttle valve, and a wastegate valve by the controller according to the load condition of the engine, where a combustion chamber generates power by combusting a fuel, an intake valve adjusts an air/fuel mixed gas flowed into the combustion chamber, a continuously variable valve timing apparatus advances or retards an opening/closing timing of the intake valve, a turbocharger having a turbine and a compressor compressing air flowed into the combustion chamber, a throttle valve adjusting air supplied to the combustion chamber, a wastegate valve adjusting the exhaust gas flowed into the turbine, and a controller controlling the intake valve, the throttle valve, and the wastegate valve according to a load region of the engine.
Abstract:
An engine system may include: an engine including cylinders that generate a driving torque by combusting fuel; a first intake manifold connected to an intake line through which flows intake air into some of the plurality of cylinders; a second intake manifold supplying the intake air to the other cylinders of the plurality of cylinders through the first intake manifold; a first exhaust manifold connected to some cylinders that are connected to the first intake manifold; a second exhaust manifold connected to some other cylinders that are connected to the second intake manifold; a recirculation line branched from the second exhaust manifold to be coupled to the second intake manifold; a recirculation inlet valve disposed at a point at which the recirculation line and the second exhaust manifold are joined; and a manifold connection valve disposed on an intake line between the first intake manifold and the second intake manifold.
Abstract:
An engine system may include an intake line, and a cylinder deactivation (CDA) device selectively deactivating a portion of combustion chambers in the engine. The engine system may further include a first exhaust manifold connected to a first plurality of combustion chambers mounted with the CDA device, a second exhaust manifold connected to a second plurality of combustion chambers without the CDA device, a first exhaust line connected to the first exhaust manifold, a second exhaust line connected to the second exhaust manifold, and a third exhaust line connected with the first and second exhaust lines through an exhaust gas processing device. In addition, a turbocharger including a turbine is mounted at the first exhaust line and rotated by exhaust gas. An air injection device may supply air to the second exhaust manifold or the second exhaust line in a catalyst heating mode of the exhaust gas processing device.