Semiconductor wafer heater with infrared lamp module with light blocking
means
    1.
    发明授权
    Semiconductor wafer heater with infrared lamp module with light blocking means 失效
    带红外灯模块的半导体晶片加热器具有遮光装置

    公开(公告)号:US5345534A

    公开(公告)日:1994-09-06

    申请号:US39720

    申请日:1993-03-29

    CPC分类号: H01L21/67115

    摘要: A thin reflective cylindrical baffle [20] in a radiant lamp heater is provided in the space below a plurality of heating bulbs [2,4,6] (arranged in a center position and around a middle and outer ring) and above a quartz window [12]. The baffle diameter is such that it fits within the annular space between the middle [4] and outer [6]ring of bulbs. The baffle which blocks a predetermined amount of light generated by the lamp bulbs [20] allows improved controllability of wafer temperature profile--for a wafer heated by a radiant lamp heater.

    摘要翻译: 辐射灯加热器中的薄反射圆柱形挡板[20]设置在多个加热灯泡[2,4,6]下方的空间(布置在中心位置并且围绕中间和外环)以及石英窗 [12]。 挡板直径使其适合在中间[4]和外部[6]球形环之间的环形空间内。 阻挡由灯泡[20]产生的预定量的光的挡板允许改善由辐射灯加热器加热的晶片的晶片温度分布的可控制性。

    Fiber optic network for multi-point emissivity-compensated semiconductor
wafer pyrometry
    3.
    发明授权
    Fiber optic network for multi-point emissivity-compensated semiconductor wafer pyrometry 失效
    用于多点发射率补偿半导体晶片高温测量的光纤网络

    公开(公告)号:US5317656A

    公开(公告)日:1994-05-31

    申请号:US17359

    申请日:1993-02-11

    IPC分类号: G01J5/00 G02B6/35 G02B6/02

    摘要: A fiber-optic network for communicating non-invasive, real-time, in-situ semiconductor wafer radiance and emissivity measurements. The fiber-optic network includes a plurality of optical fibers, a plurality of fiber-optic bundles, and a chopper multiplexer. The fiber-optic bundle provides for the simultaneous transmission and receipt of coherent infrared light energy and radiant heat energy from a semiconductor wafer within a fabrication reactor. The fiber-optic bundles are designed to be sufficiently small to fit within hollow light pipe in a lamp module that directs optical heating energy to the wafer. This substantially eliminates measurement error that the lamp module generates in known measurement devices. Use of optical fibers for transmitting and receiving laser energy and wafer radiance permits precision placement of the fiber-optic bundles to measure multiple temperatures on the semiconductor wafer surface.

    摘要翻译: 用于通信非侵入式,实时,原位半导体晶片辐射和发射率测量的光纤网络。 光纤网络包括多个光纤,多个光纤束和斩波多路复用器。 光纤束提供在制造反应器内同时传输和接收来自半导体晶片的相干红外光能量和辐射热能。 光纤束被设计为足够小以适合于将光学加热能量引导到晶片的灯模块中的中空光管中。 这实质上消除了灯模块在已知测量装置中产生的测量误差。 使用光纤传输和接收激光能量和晶片辐射允许光纤束的精确放置以测量半导体晶片表面上的多个温度。

    Apparatus and method for determining wafer temperature using pyrometry
    4.
    发明授权
    Apparatus and method for determining wafer temperature using pyrometry 失效
    使用高温计测定晶片温度的装置和方法

    公开(公告)号:US5305417A

    公开(公告)日:1994-04-19

    申请号:US37771

    申请日:1993-03-26

    摘要: In a RTP reactor where wafer temperature is measured by a pyrometer assembly (32), a pyrometer assembly (50) is further provided to measure the temperature of the quartz window (30) that is situated between the wafer pyrometer assembly (32) and the wafer (16) that is being processed. During the calibration procedure (100, 120) where a thermocouple wafer is used, the measurements from the wafer pyrometer assembly (32) and the window pyrometer assembly (50) are calibrated, and pyrometer measurements and thermocouple measurements are collected and compiled into calibration tables. During actual RTP reactor operation, the data from the calibration tables and current wafer and window pyrometer measurements are used to compute corrected wafer temperature(s). The corrected wafer temperature(s) is/are then used to control the intensities of the heating lamps according to the wafer processing heating schedule.

    摘要翻译: 在通过高温计组件(32)测量晶片温度的RTP反应器中,还提供高温计组件(50)以测量位于晶片高温计组件(32)和晶片高温计组件(32)之间的石英窗口(30)的温度, 正在处理的晶片(16)。 在使用热电偶晶片的校准过程(100,120)期间,对来自晶片高温计组件(32)和窗口高温计组件(50)的测量进行校准,并将高温计测量和热电偶测量值收集并编译成校准表 。 在实际的RTP电抗器操作期间,使用来自校准表和当前晶圆和窗口高温计测量的数据来计算校正的晶片温度。 然后使用校正的晶片温度来根据晶片加工时间表来控制加热灯的强度。

    Multi-point semiconductor wafer fabrication process temperature control
system
    5.
    发明授权
    Multi-point semiconductor wafer fabrication process temperature control system 失效
    多点半导体晶圆制造工艺温度控制系统

    公开(公告)号:US5508934A

    公开(公告)日:1996-04-16

    申请号:US237971

    申请日:1994-05-04

    IPC分类号: G01J5/00 G01S5/06

    CPC分类号: G01J5/0003

    摘要: A computer controlled system for real-time control of semiconductor wafer fabrication process uses a multi-point, real-time, non-invasive, in-situ pyrometry-based temperature sensor with emissivity compensation to produce semiconductor wafer reflectance, transmittance, and radiant heat energy measurements. The temperature values that the sensor determines are true temperatures for various points on the wafer. The process control computer stores surface roughness values for the semiconductor wafer being examined. The surface roughness values are produced by surface roughness sensor that makes non-invasive and in-situ measurements. The surface roughness sensor performs roughness measurements of the semiconductor wafer based on coherent reflectance and scatter reflectance of the wafer. Based on surface roughness measurements, the process control computer can use the real-time, in-situ measurements of the multi-point pyrometry-based sensor to obtain real-time measurements of time wafer temperature distribution. By associating a multi-zone lamp module having a real-time controller with the present invention a feedback circuit is provided for real-time precision semiconductor wafer process control.

    摘要翻译: 用于半导体晶片制造过程的实时控制的计算机控制系统使用具有发射率补偿的多点,实时,非侵入性的基于高温测量的温度传感器来产生半导体晶圆的反射率,透射率和辐射热 能量测量。 传感器确定的温度值是晶圆上各个点的真实温度。 过程控制计算机存储正在检查的半导体晶片的表面粗糙度值。 表面粗糙度值由表面粗糙度传感器产生,可进行非侵入性和原位测量。 表面粗糙度传感器基于晶片的相干反射率和散射反射率执行半导体晶片的粗糙度测量。 基于表面粗糙度测量,过程控制计算机可以使用基于多点高温测量的传感器的实时,原位测量来获得时间晶片温度分布的实时测量。 通过将具有实时控制器的多区域灯模块与本发明相关联,提供了用于实时精密半导体晶片工艺控制的反馈电路。

    Multi-point pyrometry with real-time surface emissivity compensation
    6.
    发明授权
    Multi-point pyrometry with real-time surface emissivity compensation 失效
    多点高温测量与实时表面发射率补偿

    公开(公告)号:US5255286A

    公开(公告)日:1993-10-19

    申请号:US911609

    申请日:1992-07-10

    IPC分类号: G01J5/00 G01J5/08 G01J5/10

    摘要: A multi-point non-invasive, real-time pyrometry-based temperature sensor (200) for simultaneously sensing semiconductor wafer (22) temperature and compensating for wafer emissivity effects. The pyrometer (200) measures the radiant energy that a heated semiconductor wafer (22) emits and coherent beams of light (224) that the semiconductor wafer (22) reflects. As a result, the sensor (200) generates accurate, high-resolution multi-point measurements of semiconductor wafer (22) temperature during a device fabrication process. The pyrometer (200) includes an infrared laser source (202) that directs coherent light beam (203) into beam splitter (204). From the beam splitter (204), the coherent light beam (203) is split into numerous incident coherent beams (210). Beams (210) travel via optical fiber bundles (218) to the surface of semiconductor wafer (22) within the fabrication reactor (80). Each optical fiber bundle (218) collects reflected coherent light beam and radiant energy from wafer (22). Reflected coherent light beam (226) and radiant energy (222) is directed to a detector (240) for detecting signals and recording radiance, emissivity, and temperature values. Multiple optical fiber bundles (218) may be used in the sensor (200) for high spatial resolution multi-point measurements of wafer (22) temperature for precision real-time process control and uniformity optimizations.

    摘要翻译: 一种用于同时感测半导体晶片(22)温度并补偿晶片辐射效应的多点非侵入式实时基于高温测量的温度传感器(200)。 高温计(200)测量加热的半导体晶片(22)发射的辐射能量和半导体晶片(22)反射的相干的光束(224)。 结果,传感器(200)在器件制造过程中产生半导体晶片(22)温度的准确的高分辨率多点测量。 高温计(200)包括将相干光束(203)引导到分束器(204)中的红外激光源(202)。 从分束器(204),相干光束(203)被分成许多入射相干光束(210)。 光束(210)通过光纤束(218)行进到制造反应器(80)内的半导体晶片(22)的表面。 每个光纤束(218)从晶片(22)收集反射的相干光束和辐射能。 反射相干光束(226)和辐射能(222)被引导到用于检测信号和记录辐射度,发射率和温度值的检测器(240)。 可以在传感器(200)中使用多个光纤束(218),用于晶片(22)温度的高空间分辨率多点测量,用于精确实时过程控制和均匀性优化。

    Multi-point pyrometry with real-time surface emissivity compensation
    7.
    发明授权
    Multi-point pyrometry with real-time surface emissivity compensation 失效
    多点高温测量与实时表面发射率补偿

    公开(公告)号:US5156461A

    公开(公告)日:1992-10-20

    申请号:US702646

    申请日:1991-05-17

    IPC分类号: G01J5/00 G01J5/08

    摘要: A multi-point non-invasive, real-time pyrometry-based temperature sensor (200) for simultaneously sensing semiconductor wafer (22) temperature and compensating for wafer emissivity effects. The pyrometer (200) measures the radiant energy that a heated semiconductor wafer (22) emits and coherent beams of light (224) that the semiconductor wafer (22) reflects. As a result, the sensor (200) generates accurate, high-resolution multi-point measurements of semiconductor wafer (22) temperature during a device fabrication process. The pyrometer (200) includes an infrared laser source (202) that directs coherent light beam (203) into beam splitter (204). From the beam splitter (204), the coherent light beam (203) is split into numerous incident coherent beams (210). Beams (210) travel via optical fiber bundles (218) to the surface of semiconductor wafer (22) within the fabrication reactor (80). Each optical fiber bundle (218) collects reflected coherent light beam and radiant energy from wafer (22). Reflected coherent light beam (226) and radiant energy (222) is directed to a detector (240) for detecting signals and recording radiance, emissivity, and temperature values. Multiple optical fiber bundles (218) may be used in the sensor (200) for high spatial resolution multi-point measurements of wafer (22) temperature for precision real-time process control and uniformity optimizations.

    摘要翻译: 一种用于同时感测半导体晶片(22)温度并补偿晶片辐射效应的多点非侵入式实时基于高温测量的温度传感器(200)。 高温计(200)测量加热的半导体晶片(22)发射的辐射能量和半导体晶片(22)反射的相干的光束(224)。 结果,传感器(200)在器件制造过程中产生半导体晶片(22)温度的准确的高分辨率多点测量。 高温计(200)包括将相干光束(203)引导到分束器(204)中的红外激光源(202)。 从分束器(204),相干光束(203)被分成许多入射相干光束(210)。 光束(210)通过光纤束(218)行进到制造反应器(80)内的半导体晶片(22)的表面。 每个光纤束(218)从晶片(22)收集反射的相干光束和辐射能。 反射相干光束(226)和辐射能(222)被引导到用于检测信号和记录辐射度,发射率和温度值的检测器(240)。 可以在传感器(200)中使用多个光纤束(218),用于晶片(22)温度的高空间分辨率多点测量,用于精确实时过程控制和均匀性优化。