Abstract:
An end winding support segment for a generator rotor includes a support segment body with a curved inner surface configured to be adjacent to a rotor shaft, a winding support arm extending radially outward from the support segment body, and an orifice extending from the curved inner surface of the support to an exterior surface of the support adjacent the winding support arm with the orifice configured to transfer lubricant from a surface of the rotor shaft to a winding located on the winding support arm.
Abstract:
A stator for a generator includes a core having a back iron that is annular in shape and poles that extend inward from the back iron, a hoop having an annular shape that is radially inward from the back iron, and a plurality of winding supports surrounding the poles. Each winding support includes a tooth extending radially inward from the hoop and surrounding a corresponding pole with the tooth having a first end adjacent to the hoop and a second end radially inward from the first end and a first channel on a first axial side of the tooth extending from the second end to the first end. The stator also includes a plurality of windings with each winding wrapped around a corresponding tooth so that each winding is spaced from the tooth at the first channel.
Abstract:
A wedge for use in a generator rotor includes a wedge body extending for an axial length and having a generally triangular cross-section, a first side of the wedge body extending for the axial length of the wedge body, a second side of the wedge body extending for the axial length of the wedge body and having a generally flat surface, a third side of the wedge body extending for the axial length of the wedge body and having a generally flat surface, a first arm extending circumferentially away from the wedge body at an interface between the first side and the second side and extending axially along the wedge body, and a second arm extending circumferentially away from the wedge body at an interface between the first side and the third side and extending axially along the wedge body.
Abstract:
A wedge for use in a generator rotor includes a wedge body extending for an axial length and having a generally triangular cross-section, a first side of the wedge body extending for the axial length of the wedge body, a second side of the wedge body extending for the axial length of the wedge body and having a generally flat surface, a third side of the wedge body extending for the axial length of the wedge body and having a generally flat surface, a first arm extending circumferentially away from the wedge body at an interface between the first side and the second side and extending axially along the wedge body, and a second arm extending circumferentially away from the wedge body at an interface between the first side and the third side and extending axially along the wedge body.
Abstract:
An end winding support for a generator rotor includes a support body with an annular inner surface configured to be radially outward from a rotor shaft, a plurality of winding support arms extending radially outward from the support body, and a plurality of orifices extending from the annular inner surface of the support to an exterior surface of the support body adjacent the plurality of winding support arms with the plurality of orifices configured to transfer lubricant from a surface of the rotor shaft to a plurality of windings located on the plurality of winding support arms.
Abstract:
An end winding support segment for a generator rotor includes a support segment body with a curved inner surface configured to be adjacent to a rotor shaft, a winding support arm extending radially outward from the support segment body, and an orifice extending from the curved inner surface of the support to an exterior surface of the support adjacent the winding support arm with the orifice configured to transfer lubricant from a surface of the rotor shaft to a winding located on the winding support arm.