Abstract:
A touchscreen includes touchscreen electrode elements distributed across an active area of a substrate, and the touchscreen overlays a display. The touchscreen electrode elements are configured to avoid creating moiré patterns between the display and the touchscreen, such as angled, wavy, zig-zag, or randomized lines. In a further example, the electrodes form a mesh pattern configured to avoid moiré patterns.
Abstract:
A controller includes drive circuitry to drive one target drive electrode of a touch sensitive device with a series of predetermined phase pulses and to drive at least one other drive electrode of the touch sensitive device with a corresponding series of out-of-phase pulses. Sense circuitry receives signal transferred to sense electrodes from the drive electrodes of the touch sensitive device. The received signal is responsive to one or more touches on the touch sensitive device.
Abstract:
A touchscreen includes touchscreen electrode elements distributed across an active area of a substrate, and the touchscreen overlays a display. The touchscreen electrode elements are configured to avoid creating moiré patterns between the display and the touchscreen, such as angled, wavy, zig-zag, or randomized lines. In a further example, the electrodes form a mesh pattern configured to avoid moiré patterns.
Abstract:
In one embodiment, a method includes receiving one or more first output signals from a first area of a touch-sensitive position sensor; receiving one or more second output signals from a second area of the touch-sensitive position sensor; calculating a first touch-position estimate based on the first output signals; calculating a second touch-position estimate based on the second output signals; and determining, based at least in part on the first and second touch-position estimates, an intended-touch location with respect to the touch-sensitive position sensor.
Abstract:
In one embodiment, a touch sensor includes drive electrodes. The drive electrodes include drive electrode structures that are each coupled to an adjacent drive electrode structure by a first strip of conductive material. The touch sensor also includes sense electrodes. The sense electrodes include sense electrode structures that are each coupled to an adjacent sense electrode structure by a second strip of conductive material. The sense electrode structures are formed on a same layer as the drive electrode structures. The first or second strip of conductive material include one or more conductive crossovers that each couple two drive electrode structures to each other or couple two sense electrode structures to each other.
Abstract:
Method and apparatus are provided for a capacitive sensor. In an example, a capacitive sensor can include a first sensing element, a sensing channel operable to generate a first signal indicative of first capacitance between the sensing element and a system ground, and a processor responsive to a change in the first capacitance between the first sensing element and ground. The processor can be configured to adjust a parameter value based on a first duration of the change in the first capacitance.
Abstract:
In one embodiment, a touch sensor includes drive electrodes. The drive electrodes include drive electrode structures that are each coupled to an adjacent drive electrode structure by a first strip of conductive material. The touch sensor also includes sense electrodes. The sense electrodes include sense electrode structures that are each coupled to an adjacent sense electrode structure by a second strip of conductive material. The sense electrode structures are formed on a same layer as the drive electrode structures. The first or second strip of conductive material include one or more conductive crossovers that each couple two drive electrode structures to each other or couple two sense electrode structures to each other.
Abstract:
Keyboards, keypads and other data entry devices can suffer from a keying ambiguity problem. In a small keyboard, for example, a user's finger is likely to overlap from a desired key to onto adjacent ones. An iterative method of removing keying ambiguity from a keyboard comprising an array of capacitive keys involves measuring a signal strength associated with each key in the array, comparing the measured signal strengths to find a maximum, determining that the key having the maximum signal strength is the unique user-selected key, and maintaining that selection until either the initially selected key's signal strength drops below some threshold level or a second key's signal strength exceeds the first key's signal strength.
Abstract:
An exemplary touch position sensing panel includes an opaque electrode layer and a transparent electrode layer separated from the opaque electrode layer by a substrate. The electrodes are arranged such that nodes are formed in areas where the electrodes cross over each other. The transparent electrode layer shields the opaque layer from electric field noise from electric field sources underlying the position-sensing panel, such as a display, while at the same time providing transparency to light emitted from the underlying display. Techniques are also discussed for forming the transparent electrode layer and/or the opaque electrode layer.
Abstract:
In a capacitive sensor of the type having X electrodes which are driven and Y electrodes that are used as sense channels connected to charge measurement capacitors, signal measurements are made conventionally by driving the X electrodes to transfer successive packets of charge to the charge measurement capacitors. However, an additional noise measurement is made by emulating or mimicking the signal measurement, but without driving the X electrodes. The packets of charge transferred to the charge accumulation capacitor are then indicative of noise induced on the XY sensing nodes. These noise measurements can be used to configure post-processing of the signal measurements.