Abstract:
According to one embodiment, an optical transmitter/receiver circuit device includes a transmitter circuit including a transition time adjusting circuit to obtain a second voltage signal from a first voltage signal and a voltage-current converter circuit that converts the second voltage signal to a first current signal, a light-emitting element to convert the first current signal to an optical signal, a light-receiving element to convert the optical signal to a second current signal, and a receiver circuit including a current-voltage converter circuit that converts the second current signal to a third voltage signal, a pulse generation circuit to generate rise and fall pulse from the third voltage signal and a decoder circuit that generates a fourth voltage signal in synchronism with the pulse.
Abstract:
According to one embodiment, a circuit comprises a first resistor configured to have one end to which a first voltage is input and the other end which outputs a second voltage and a first amplifier configured to have an inverting input connected to the other end of the first resistor and a noninverting input to which a third voltage is input. The circuit further comprises a first capacitor configured to have one end to which an output of the first amplifier is input and the other end to which the other end of the first resistor is connected. An output of the first amplifier or an output of a second amplifier connected to the other end of the first resistor is a fourth voltage. In the circuit, the first resistor and a mirror capacitance composed of the first capacitor and the first amplifier constitute a low-pass filter.
Abstract:
According to an embodiment, a wavelength converter includes a resin allowing light emitted from a light source to pass through, a plurality of particle-shaped fluorescent substances dispersed in the resin, and fillers dispersed in the resin with a particle diameter smaller than the fluorescent substance. The fluorescent substances absorb the light emitted from the light source and emits fluorescence having a wavelength different from a wavelength of the light emitted from the light source; and a distribution of the fillers has higher density near the fluorescent substance than a density at a middle position between the fluorescent substances adjacent to each other.
Abstract:
According to an embodiment, a wavelength converter includes a resin allowing light emitted from a light source to pass through, a plurality of particle-shaped fluorescent substances dispersed in the resin, and fillers dispersed in the resin with a particle diameter smaller than the fluorescent substance. The fluorescent substances absorb the light emitted from the light source and emits fluorescence having a wavelength different from a wavelength of the light emitted from the light source; and a distribution of the fillers has higher density near the fluorescent substance than a density at a middle position between the fluorescent substances adjacent to each other.
Abstract:
According to an embodiment, a method for manufacturing a semiconductor light emitting device includes steps for forming a fluorescent substance layer on a first face of a semiconductor layer and forming a light shielding film on the side face of the fluorescent substance layer. The fluorescent substance layer includes a resin and fluorescent substances dispersed in the resin, and have a light emitting face on a side opposite to the first face of the semiconductor layer and a side face connecting to the light emitting face with an angle of 90 degree or more between the light emitting face and the side face. The light shielding film shields a light emitted from a light emitting layer included in the semiconductor layer and a light radiated from the fluorescent substances.
Abstract:
A wiring electrode is provided on a mount substrate. A light emitting element is provided on the wiring electrode to connect electrically with the wiring electrode and is configured to emit a blue to ultraviolet light. A reflective film is provided above the light emitting element to cover the light emitting element so that a space is interposed between the reflective film and the light emitting element. The reflective film is capable of transmitting the blue to ultraviolet light. A fluorescent material layer is provided above the light emitting element to cover the light emitting element so that the reflective film is located between the fluorescent material layer and the light emitting element. A light from the fluorescent material layer is reflected by the reflective film.
Abstract:
A mounting structure includes an optoelectronic interconnection module that includes electrical interconnection lines, optical interconnection lines, optical semiconductor device and electrical connection terminals, a mounting board that includes electrical interconnection lines and electrical connection terminals on a main surface and on which the optoelectronic interconnection module is mounted, and a connection member that electrically connects, adheres and fixes the electrical connection terminals and the electrical connection terminals. The optoelectronic interconnection module comprises a circuit area on which the optical semiconductor device is mounted and electrical connection terminals are formed and an interconnection area that is formed in a region other than the circuit area and in which the optical interconnection lines and electrical interconnection lines are formed, and the electrical connection terminals are formed on the interconnection area side rather than the optical semiconductor device.
Abstract:
A transmitting circuit has a first transmitter configured to generate a first electric pulse signal in synchronization with a rising edge of a digital electric input signal, a second transmitter configured to generate a second electric pulse signal in synchronization with a falling edge of the digital electric input signal, a first variable impedance circuit configured to supply a bias current to a first light-emitting element only for a predetermined period before the first light-emitting element for converting the first electric pulse signal into a first light signal is supplied with the first electric pulse signal, and a second variable impedance circuit configured to supply a bias current to a second light-emitting element only for a predetermined period before the second light-emitting element for converting the second electric pulse signal into a second light signal is supplied with the second electric pulse signal.
Abstract:
According to one embodiment, an optical transmission line holding member includes a holding member body, a plurality of holding holes, a plurality of electrical interconnections, and a plurality of grooves. The holding member body includes an optical semiconductor element mounting surface and an opposite surface thereof and configured to hold optical transmission lines. The holding holes are formed to penetrate between the optical semiconductor element mounting surface of the holding member body and the opposite surface thereof, the holding holes having an opening on the optical semiconductor element mounting surface side. The electrical interconnections are provided on a part of the optical semiconductor element mounting surface and electrically connected to the optical semiconductor element. The grooves are provided adjacent to the openings of the holding holes in a part of a region of the optical semiconductor element mounting surface except a region in which the electrical interconnections.
Abstract:
A laser-induced optical wiring apparatus includes a substrate, first and second light-reflecting members provided on the substrate separately from each other, an optical waveguide provided on the substrate for optically coupling the first and second light-reflecting members to form an optical resonator, a first optical gain member provided across the optical waveguide and forming a laser oscillator along with the first and second light-reflecting members, and a second optical gain member provided across the optical waveguide separately from the first optical gain member, and forming another laser oscillator along with the first and second light-reflecting members.