摘要:
A fuel cell system includes a fuel cell including at least one unit cell having an anode, an anode-side flow channel for supplying a fuel to the anode, a cathode, and a cathode-side flow channel for supplying an oxidant to the cathode. The fuel cell system further includes a gas-liquid separator for catalytically purifying the effluent from the anode and the effluent from the cathode to collect liquid. The gas-liquid separator is connected to an anode-side discharge path for the effluent and a cathode-side discharge path for the effluent, which are in fluid communication with a fuel outlet of the anode-side flow channel and an oxidant outlet of the cathode-side flow channel, respectively.
摘要:
A fuel cell system includes a fuel cell including at least one unit cell having an anode, an anode-side flow channel for supplying a fuel to the anode, a cathode, and a cathode-side flow channel for supplying an oxidant to the cathode. The fuel cell system further includes a gas-liquid separator for catalytically purifying the effluent from the anode and the effluent from the cathode to collect liquid. The gas-liquid separator is connected to an anode-side discharge path for the effluent and a cathode-side discharge path for the effluent, which are in fluid communication with a fuel outlet of the anode-side flow channel and an oxidant outlet of the cathode-side flow channel, respectively.
摘要:
A direct oxidation fuel cell of this invention has at least one unit cell including: a membrane-electrode assembly comprising an electrolyte membrane sandwiched between an anode and a cathode, each of the anode and the cathode including a catalyst layer and a diffusion layer; an anode-side separator with a fuel flow channel for supplying a fuel to the anode; and a cathode-side separator with an oxidant flow channel for supplying an oxidant containing oxygen gas to the cathode. The fuel flow channel and the oxidant flow channel are so structured that the concentration of the oxygen gas in the oxidant flow channel is higher at a part opposing an upstream part of the fuel flow channel than at a part opposing a downstream part of the fuel flow channel.
摘要:
A method for activating a direct oxidation fuel cell including an anode, a cathode, and a proton-conductive electrolyte membrane interposed between the anode and the cathode is provided. The anode and the cathode each have a catalyst layer on a face in contact with the proton-conductive electrolyte membrane. This method activates the fuel cell by passing a current through the fuel cell from an external power source, with the positive electrode and the negative electrode of the external power source connected to the anode and the cathode of the fuel cell, respectively, while supplying an organic fuel and an inert gas to the anode and the cathode, respectively.
摘要:
A method for activating a direct oxidation fuel cell including an anode, a cathode, and a proton-conductive electrolyte membrane interposed between the anode and the cathode is provided. The anode and the cathode each have a catalyst layer on a face in contact with the proton-conductive electrolyte membrane. This method activates the fuel cell by passing a current through the fuel cell from an external power source, with the positive electrode and the negative electrode of the external power source connected to the anode and the cathode of the fuel cell, respectively, while supplying an organic fuel and an inert gas to the anode and the cathode, respectively.
摘要:
A method for operating a fuel cell system including a fuel cell stack composed of a plurality of cells connected in series. The method includes the steps of: (a) supplying a fuel and an oxidant to anodes and cathodes of the cells, respectively, depending on a load to generate power at a constant voltage under constant voltage control; (b) temporarily suspending the supply of the oxidant with the fuel being supplied; and (c) lowering the constant voltage to a predetermined voltage simultaneously with or immediately before the suspension of the supply of the oxidant. According to this operation method, when the supply of the oxidant is suspended, a platinum catalyst in the cathodes can be reduced and reactivated in all the cells.
摘要:
A direct oxidation fuel cell of this invention has at least one unit cell including: a membrane-electrode assembly comprising an electrolyte membrane sandwiched between an anode and a cathode, each of the anode and the cathode including a catalyst layer and a diffusion layer; an anode-side separator with a fuel flow channel for supplying a fuel to the anode; and a cathode-side separator with an oxidant flow channel for supplying an oxidant containing oxygen gas to the cathode. The fuel flow channel and the oxidant flow channel are so structured that the concentration of the oxygen gas in the oxidant flow channel is higher at a part opposing an upstream part of the fuel flow channel than at a part opposing a downstream part of the fuel flow channel.
摘要:
A direct oxidation fuel cell with high catalyst utilization efficiency and excellent power generation characteristics. The unit cell includes: a membrane-electrode assembly including an anode, a cathode, and an electrolyte membrane interposed therebetween; and anode-side and cathode-side separators being in contact with the anode and cathode, respectively. The anode and cathode each includes a catalyst layer disposed on one principal surface of the electrolyte membrane. At least one of the anode and cathode catalyst layers has a center portion and a peripheral portion surrounding the center portion. The catalyst amounts C2b and C2c per unit projected area of regions facing the midstream and downstream of the flow channel of the separator within the peripheral portion are each smaller than the catalyst amount C1 per unit projected area of the center portion.
摘要:
A direct oxidation fuel cell of this invention has at least one unit cell including: a membrane-electrode assembly including an electrolyte membrane sandwiched between an anode and a cathode, each of the anode and the cathode including a catalyst layer and a diffusion layer; an anode-side separator with a fuel flow channel for supplying a fuel to the anode; and a cathode-side separator with an oxidant flow channel for supplying an oxidant to the cathode. The catalyst layer of at least one of the anode and the cathode includes high-porosity regions and low-porosity regions, and the high-porosity regions and the low-porosity regions are arranged in a mixed configuration.
摘要:
A fuel container for storing a fuel liquid for a fuel cell has a double wall structure including an inner container for storing a fuel liquid and an outer container for housing the inner container, and a material capable of retaining the fuel between the inner container and the outer container. A fuel cell pack includes a fuel cell and a fuel container for storing a fuel liquid for the fuel cell. The fuel cell pack includes a double wall exterior casing having an inner casing for housing the fuel cell and the fuel container and an outer casing for housing the inner casing, and a material capable of retaining the fuel between the inner casing and the outer casing.