Abstract:
Provided is a cross-section processing observation method capable of easily and accurately forming a cross-section used to observe a sample's inside, and a cross-section processing observation apparatus for cross-section processing. The method includes a design data acquisition step acquiring design data of a three-dimensional structure of a sample having three-dimensional structure, a moving step moving the sample based on coordinate information of the design data, a surface observation step acquiring an observation image of a surface of the sample, a cross-section forming step irradiating the sample's surface with an ion beam to form a cross-section of the three-dimensional structure, a cross-section observation step acquiring an observation image of the sample's cross-section, and a display step displaying image data, among pieces of the design data, of surface and cross section corresponding to respective locations of the surface and the cross section.
Abstract:
A charged particle beam apparatus includes a sample stage, a focused ion beam column, a scattered electron detector that detects backscattered electrons generated from a cross-section of a sample, a crystal orientation information generation unit that generates crystal orientation information on a predetermined region of the cross-section, and an angle calculation unit that calculates attachment angles of the sample stage, corresponding to a direction of the cross-section. In response to receiving input of information indicating that the crystal orientation information on the region displayed on a display unit is changed to aimed second crystal orientation information, the angle calculation unit calculates the attachment angles corresponding to the direction of the cross-section for generating the second crystal orientation information, and the focused ion beam column performs etching processing on the cross-section at the calculated attachment angles.
Abstract:
A cross-section processing-and-observation method includes: a cross-section exposure step of irradiating a sample with a focused ion beam to expose a cross-section of the sample; a cross-sectional image acquisition step of irradiating the cross-section with an electron beam to acquire a cross-sectional image of the cross-section; and a step of repeatedly performing the cross-section exposure step and the cross-sectional image acquisition step along a predetermined direction of the sample at a setting interval to acquire a plurality of cross-sectional images of the sample. In the cross-sectional image acquisition step, a cross-sectional image is acquired under different condition settings for a plurality of regions of the cross-section.
Abstract:
A cross-section processing-and-observation method, including a cross-section exposure step in which a sample is irradiated with a focused ion beam to expose a cross-section of the sample, and a cross-sectional image acquisition step in which the cross-section is irradiated with an electron beam to acquire a cross-sectional image of the cross-section. The cross-section exposure step and the cross-sectional image acquisition step are repeatedly performed along a predetermined direction of the sample at a setting interval to acquire multiple cross-sectional images of the sample. The method also includes a specific observation target detection step in which a predetermined specific observation target from the cross-sectional image acquired a the cross-sectional image acquisition step is detected. In the specific observation target detection step, after a predetermined specific observation target is detected, the setting interval of the cross-section exposure step is set to be shorter than that before the specific observation target is detected.
Abstract:
A sample preparation method includes processing a sample by an ion beam to form a thin film portion having a thickness that allows an electron beam to transmit therethrough; supplying deposition gas to the thin film portion; and irradiating the thin film portion with an electron beam to simultaneously form a deposition film on a front surface of the thin film portion and a deposition film on a rear surface of the thin film portion opposed to the front surface. The electron beam transmits through the thin film portion, generating secondary electrons from both the front and rear surfaces that decompose the deposition gas to form the deposition films.
Abstract:
A crystal analysis apparatus includes: a measurement data storage configured to store electron back-scattering pattern (EBSP) data measured at electron beam irradiation points on a plurality of cross-sections of a sample formed substantially in parallel at prescribed intervals; a crystal orientation database configured to accumulate therein information of crystal orientations corresponding to EBSPs; and a map constructing unit that constructs a three-dimensional crystal orientation map based on distribution of crystal orientations in normal directions of a plurality of faces of a polyhedral image having the cross-sections arranged at the prescribed intervals by reading out the crystal orientations in the normal directions of the faces from the crystal orientation database on the basis of the EBSP data stored in the measurement data storage.
Abstract:
Provided is a composite charged particle beam apparatus, including: an electron beam column for irradiating a sample with an electron beam; an ion beam column for irradiating the sample with an ion beam to perform etching processing; a sample stage drive portion for moving a sample stage in an irradiation axis direction of the electron beam; and a column adjusting portion for moving the ion beam column relatively to a sample chamber such that the sample is irradiated with the ion beam at a position irradiated with the electron beam.
Abstract:
The charged particle beam irradiation apparatus includes: a focused ion beam column; an electron beam column; an electron detector; an image forming unit configured to form an observation image based on a signal output from the electron detector; and a control unit configured to repeatedly perform exposure control in which the focused ion beam column is controlled to expose a cross section of a multilayered sample toward a stacking direction with the focused ion beam, the control unit being configured to perform, every time exposure of an observation target layer at a cross section of the multilayered sample is detected in a process of repeatedly performing the exposure control, observation control in which the electron beam column is controlled to radiate the electron beam, and the image forming unit is controlled to form an observation image of the cross section of the multilayered sample.
Abstract:
A cross-section processing and observation method performed by a cross-section processing and observation apparatus comprises a cross-section processing step of forming a cross-section by irradiating a sample with an ion beam; a cross-section observation step of obtaining an observation image of the cross-section by irradiating the cross-section with an electron beam; and repeating the cross-section processing step and the cross-section observation step so as to obtain observation images of a plurality of cross-sections. In a case where Energy Dispersive X-ray Spectrometry (EDS) measurement of the cross-section is performed and an X-ray of a specified material or of a non-specified material that is different from a pre-specified material is detected, an irradiation condition of the ion beam is changed so as to obtain observation images of a plurality of cross-sections of the specified material, and the cross-section processing and observation of the specified material is performed.
Abstract:
A focused ion beam apparatus includes a focused ion beam irradiation mechanism that forms first and second cross-sections in a sample. A first image generation unit generates respective first images, either reflected electron images or secondary electron images, of the first and second cross-sections, and a second image generation unit generates a second image that is an EDS image of the first cross-section. A control section generates a three-dimensional image of a specific composition present in the sample based on the first images and the second image.