Abstract:
An engine-driven welder/generator is controlled by an integrated controller that is coupled to both the engine and to the welder/generator. The controller receives input signals for operational parameters of the engine, and additional signals indicative of electrical output by the welder/generator. Operation of the engine and welder/generator may thus be coordinated. The controller may control speed, timing, fuel injection, and so forth of the engine, and output of the welder/generator, such as by control of input to a field coil.
Abstract:
An example weld training system includes: a weld training device configured to perform a simulated welding procedure on a simulated weld joint; a work surface comprising the simulated weld joint; a sensing device configured to track weld training device location information during the simulated welding procedure; a visual interface configured to display results of the simulated welding procedure based on the weld training device location information; and an enclosure comprising an interior volume configured to house within its interior the visual interface, the work surface, and the sensing device.
Abstract:
Weld training systems and methods are disclosed. An example weld training system includes: a weld training device configured to perform a simulated welding procedure on a simulated weld joint; a work surface comprising the simulated weld joint; a sensing device configured to track weld training device location information during the simulated welding procedure; a visual interface configured to display the simulated welding procedure; and an enclosure comprising an interior volume configured to house within its interior the visual interface, the work surface, or the sensing device.
Abstract:
Dynamic range enhancement methods and systems for display for use welding applications are disclosed. An example display system in a dynamic range enhancement system includes: a first filter disposed in a first path; a second filter disposed in a second path, wherein the second filter has a lower density than the first filter, at least one of the first filter or the second filter configured to provide variable lens shading; a first image sensor disposed in the first path and configured to receive filtered electromagnetic waves from the first filter; a second image sensor disposed in the second path and configured to receive filtered electromagnetic waves from the second filter; and a graphical circuit configured to combine signals from the first image sensor and the second image sensor.
Abstract:
Systems and methods for a weld training system are provided. In particular, components of the weld training system may be removably disposed within an interior volume of a portable enclosure. The portable enclosure may be easy to transport by a welding operator from various training and/or recruiting locations. In some embodiments, the components of the weld training system include a weld training device, a work surface, a sensing device, a virtual reality interface, and processing circuitry.
Abstract:
A system in accordance with an example implementation of this disclosure comprises welding headwear to be worn by a welder during a live welding operation, the headwear comprising: a camera operable to capture an image of a live welding operation; circuitry operable to analyze the captured image to determine a characteristic of the live welding operation, and associate the characteristic with the captured image; and memory operable to store the captured image and the associated characteristic for later retrieval. The headwear may comprise a communication interface operable to communicate with a remote server. The determined characteristic may comprise a welding parameter of a welding torch in the captured image. The determined characteristic may comprise a setting, or measured output, of welding equipment that powers and/or feeds wire to a torch being used in the live welding operation.
Abstract:
A method of operating a welding system includes receiving welding data corresponding to a welding session for a weld, receiving a location selection from an operator, and displaying on a display a graphical representation of welding parameters of the welding selection corresponding to the location selection. The welding data includes welding parameters, including a work angle of a welding torch, a travel angle of the welding torch, a contact tip to work distance, a travel speed of the welding torch along a path of the weld, an aim of the welding torch, or any combination thereof. The location selection corresponds to a point along the path of the weld traversed by the welding torch.
Abstract:
A method of operating a welding system includes receiving welding data corresponding to a welding session for a weld, receiving a location selection from an operator, and displaying on a display a graphical representation of welding parameters of the welding selection corresponding to the location selection. The welding data includes welding parameters, including a work angle of a welding torch, a travel angle of the welding torch, a contact tip to work distance, a travel speed of the welding torch along a path of the weld, an aim of the welding torch, or any combination thereof. The location selection corresponds to a point along the path of the weld traversed by the welding torch.
Abstract:
Welding headwear comprises a display operable to present images for viewing by a wearer of the welding headwear, and comprises circuitry operable to determine an identifier associated with a workpiece, retrieve, from memory, welding work instructions associated with the identifier, and generate the images for presentation on the display based on said work instructions.
Abstract:
An engine-driven welder/generator is controlled by an integrated controller that is coupled to both the engine and to the welder/generator. The controller receives input signals for operational parameters of the engine, and additional signals indicative of electrical output by the welder/generator. Operation of the engine and welder/generator may thus be coordinated. The controller may control speed, timing, fuel injection, and so forth of the engine, and output of the welder/generator, such as by control of input to a field coil.