Abstract:
An organic compound, a light modulating composition and a light modulating device are provided. The organic compound has a chemical structure represented by formula (I): X—Ar—X (I) wherein X is Ar is The organic compound is transparent in its neutral state. The amide group or imide group introduced into the aromatic amine not only enhances the solubility of the organic compound in the solvent, but also enhances the electrochemical stability of the organic compound.
Abstract:
An organic compound, a light modulating composition and a light modulating device are provided. The organic compound has a chemical structure represented by formula (I): X—Ar—X (I) wherein X is Ar is The organic compound is transparent in its neutral state. The amide group or imide group introduced into the aromatic amine not only enhances the solubility of the organic compound in the solvent, but also enhances the electrochemical stability of the organic compound.
Abstract:
An electrochromic composition is provided. The electrochromic composition includes 0.5˜10 parts by weight of a first oxidizable polymer, 0.5˜10 parts by weight of a reducible organic compound, 0.5˜20 parts by weight of an electrolyte, and 60˜98.5 parts by weight of a solvent. The first oxidizable polymer is a polymer of 1 molar part of diamine and 0.1˜20 molar parts of dicarboxylic acid, diacyl chloride, or dianhydride, a mixture of the aforementioned polymers, or a copolymer of the aforementioned polymers. An electrochromic element including the aforementioned electrochromic composition is also provided.
Abstract:
A transparent electrochromic polymer is provided, which is polymerized of 1 molar part of a diamine and 1 to 4 molar parts of epoxy compound. The diamine is Formula 1, Formula 2, or combinations thereof, and the epoxy compound is Formula 12, Formula 13, or combinations thereof. The disclosed also provides an electrochromic device, including a first transparent conductive layer, an electrochromic layer on the first transparent conductive layer, and an electrolyte layer on the electrolyte layer, wherein the electrochromic layer is the transparent electrochromic polymer, and a second transparent conductive layer on the electrolyte layer.
Abstract:
A gel electrolyte and applications thereof are provided. The composition of the gel electrolyte includes an organic base and hydrogen ion exchanged inorganic nano-platelets dispersed in the organic base. The hydrogen ion exchanged inorganic nano-platelets have a size of 20 nm-80 nm. The hydrogen ion exchanged inorganic nano-platelets are chemically bonded to each other via Si—O—Si bonding. A solid content of the gel electrolyte is 1-10 wt %.
Abstract:
Disclosed is a transparent electrochromic polyimide, polymerized of a diamine and a cycloaliphatic dianhydride. The diamine includes a diamino triphenylamine having the formula: wherein R1 consists of hydrogen, halogen, C1-6 alkyl group, C1-6 alkoxy group, or and R2 consists of hydrogen, halogen, C1-6 alkyl group, or C1-6 alkoxy group. The cycloaliphatic dianhydride includes