Abstract:
For one disclosed embodiment, a processor comprises a plurality of processor cores to operate at variable performance levels. One of the plurality of processor cores may operate at one time at a performance level different than a performance level at which another one of the plurality of processor cores may operate at the one time. The plurality of processor cores are in a same package. Logic of the processor is to set one or more operating parameters for one or more of the plurality of processor cores. Logic of the processor is to monitor activity of one or more of the plurality of processor cores. Logic of the processor is to constrain power of one or more of the plurality of processor cores based at least in part on the monitored activity. The logic to constrain power is to limit a frequency at which one or more of the plurality of processor cores may be set. Other embodiments are also disclosed.
Abstract:
In one embodiment, the present invention is directed to a processor having a plurality of cores and a cache memory coupled to the cores and including a plurality of partitions. The processor can further include a logic to dynamically vary a size of the cache memory based on a memory boundedness of a workload executed on at least one of the cores. Other embodiments are described and claimed.
Abstract:
In one embodiment, a processor includes: a plurality of cores; a power controller including a logic to autonomously demote a first request for at least one core of the plurality of cores to enter a first low power state, to cause the at least one core to enter a second low power state, the first low power state a deeper low power state than the second low power state; and an interface to receive an input from a system software, the input including at least one demotion control parameter, where the logic is to autonomously demote the first request based at least in part on the at least one demotion control parameter. Other embodiments are described and claimed.
Abstract:
Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A processor may include a dedicated cache memory. A voltage regulator may be coupled to the processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero and the state variables associated with the processor may be saved to the dedicated cache memory.
Abstract:
Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A processor may include a dedicated cache memory. A voltage regulator may be coupled to the processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero and the state variables associated with the processor may be saved to the dedicated cache memory.
Abstract:
Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A processor may include a dedicated cache memory. A voltage regulator may be coupled to the processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero and the state variables associated with the processor may be saved to the dedicated cache memory.
Abstract:
Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A processor may include a dedicated cache memory. A voltage regulator may be coupled to the processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero and the state variables associated with the processor may be saved to the dedicated cache memory.
Abstract:
A processor may include power management techniques to, dynamically, chose an optimal C-state for the processing core. The measurement of real workloads on the OSes exhibit two important observations (1) the bursts of high interrupt rate are interspersed between the low interrupt rate periods and long periods of high activity levels; and (2) the interrupt rate may, suddenly, fall below an interrupt rate (of 1 milli-second, for example) that is typical of the current operating systems (OS). Instead of determining the C-state based on the stale data stored in the counters, the power control logic may determine an optimal C-state by overriding the C-state determined by the OS or any other power monitoring logic. The power control logic may, dynamically, determine an optimal C-state based on the CPU idle residency times and variable rate wakeup events to match the expected wakeup event rate.
Abstract:
Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A processor may include a dedicated cache memory. A voltage regulator may be coupled to the processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero and the state variables associated with the processor may be saved to the dedicated cache memory.
Abstract:
Disclosed embodiments relate to processing logic for performing function operations. In one example, and apparatus includes an execution unit within a processor to execute a code block, power management hardware coupled to the execution unit, wherein the power management hardware is to monitor a first execution of the code block, store a micro-architectural context of the processor in a metadata block associated with the code block, the micro-architectural context including performance data resulting from the first execution of the code block, the performance data comprising power and energy usage data, and power management related parameters, read the associated metadata block upon a second execution of the code block, and tune the second execution based on the performance data stored in the associated metadata block to increase efficiency of executing the code block.