Abstract:
Embodiments of the present disclosure are directed to a linear edge connector assembly and corresponding bolster plate features for receiving and securing a linear edge connector assembly. Embodiments of the disclosure are directed to a linear edge connector assembly that includes a grooved and indented receiver that can receive a spring loaded ball on the bolster plate. In embodiments, the linear edge connector assembly can include a magnetic element to create a magnetic attraction to magnetic elements on the bolster plate, such as a press-fit ball or a U-shaped hardstop. In some embodiments, the linear edge connector assembly includes a screw or push pin that can be received by a receiver on the bolster plate. The receiver can include a thread or friction fit receiver.
Abstract:
Embodiments of the present disclosure are directed towards techniques and configurations to control movement and position of surface mounted electrical devices. In one embodiment, an electrical contact includes a leg portion configured to extend in a first direction, a foot portion coupled with the leg portion, the foot portion having a surface that extends in a second direction that is substantially perpendicular to the first direction, the surface being configured to directly couple with solderable material to form a solder joint, a heel portion adjoining the leg portion and the foot portion, the heel portion having a profile shape, and a toe portion extending from the foot portion and disposed opposite to the heel portion, the toe portion having a profile shape that is symmetric with the profile shape of the heel portion. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of the present disclosure are directed towards techniques and configurations to control movement and position of surface mounted electrical devices. In one embodiment, an electrical contact includes a leg portion configured to extend in a first direction, a foot portion coupled with the leg portion, the foot portion having a surface that extends in a second direction that is substantially perpendicular to the first direction, the surface being configured to directly couple with solderable material to form a solder joint, a heel portion adjoining the leg portion and the foot portion, the heel portion having a profile shape, and a toe portion extending from the foot portion and disposed opposite to the heel portion, the toe portion having a profile shape that is symmetric with the profile shape of the heel portion. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of the present disclosure are directed toward techniques and configurations associated with a package load assembly. In one embodiment, a package load assembly may include a frame configured to form a perimeter around a die area of a package substrate having a first surface configured to be coupled with a surface of the package substrate and a second surface disposed opposite to the first surface. The frame may include deformable members disposed on the second surface, which may be configured to be coupled with a base of a heat sink to distribute force applied between the heat sink and the package substrate, via the frame, and may deform under application of the force, which may allow the base of the heat sink to contact a surface of an integrated heat spreader within the die area of the package substrate.
Abstract:
Embodiments of the present disclosure are directed towards techniques and configurations to control movement and position of surface mounted electrical devices. In one embodiment, an electrical contact includes a leg portion configured to extend in a first direction, a foot portion coupled with the leg portion, the foot portion having a surface that extends in a second direction that is substantially perpendicular to the first direction, the surface being configured to directly couple with solderable material to form a solder joint, a heel portion adjoining the leg portion and the foot portion, the heel portion having a profile shape, and a toe portion extending from the foot portion and disposed opposite to the heel portion, the toe portion having a profile shape that is symmetric with the profile shape of the heel portion. Other embodiments may be described and/or claimed.
Abstract:
Configurable central processing unit (CPU) package substrates are disclosed. A package substrate is described that includes a processing device interface. The package substrate also includes a memory device electrical interface disposed on the package substrate. The package substrate also includes a removable memory mechanical interface disposed proximately to the memory device electrical interface. The removable memory mechanical interface is to allow a memory device to be easily removed from the package substrate after attachment of the memory device to the package substrate.
Abstract:
Embodiments of the present disclosure are directed towards techniques and configurations to control movement and position of surface mounted electrical devices. In one embodiment, an electrical contact includes a leg portion configured to extend in a first direction, a foot portion coupled with the leg portion, the foot portion having a surface that extends in a second direction that is substantially perpendicular to the first direction, the surface being configured to directly couple with solderable material to form a solder joint, a heel portion adjoining the leg portion and the foot portion, the heel portion having a profile shape, and a toe portion extending from the foot portion and disposed opposite to the heel portion, the toe portion having a profile shape that is symmetric with the profile shape of the heel portion. Other embodiments may be described and/or claimed.
Abstract:
Configurable central processing unit (CPU) package substrates are disclosed. A package substrate is described that includes a processing device interface. The package substrate also includes a memory device electrical interface disposed on the package substrate. The package substrate also includes a removable memory mechanical interface disposed proximately to the memory device electrical interface. The removable memory mechanical interface is to allow a memory device to be easily removed from the package substrate after attachment of the memory device to the package substrate.
Abstract:
Embodiments of the disclosure are directed to a linear edge connector assembly for connecting to a substrate diving board of a mother board. The linear edge connector assembly can include an electrical interface to electrically connect the contacts on the diving board to one or more conducts of a cable bundle. The linear edge connector assembly can also include a retaining force mechanism. The retaining force mechanism can include a torsional spring, a spring loaded hooking mechanism, or a spring loaded cam and lever. In some embodiments, the linear edge connector can include a notch to receive a latch connected to a bolster plate on the mother board.
Abstract:
Embodiments of the present disclosure are directed toward techniques and configurations associated with a package load assembly. In one embodiment, a package load assembly may include a frame configured to form a perimeter around a die area of a package substrate having a first surface configured to be coupled with a surface of the package substrate and a second surface disposed opposite to the first surface. The frame may include deformable members disposed on the second surface, which may be configured to be coupled with a base of a heat sink to distribute force applied between the heat sink and the package substrate, via the frame, and may deform under application of the force, which may allow the base of the heat sink to contact a surface of an integrated heat spreader within the die area of the package substrate.