Low voltage/power junction FET with all-around junction gate

    公开(公告)号:US11869983B2

    公开(公告)日:2024-01-09

    申请号:US16817571

    申请日:2020-03-12

    摘要: A Junction Field Effect Transistor (JFET) has a source and a drain disposed on a substrate. The source and drain have an S/D doping with an S/D doping type. Two or more channels are electrically connected in parallel between the source and drain and can carry a current between the source and drain. Each of the channels has two or more channel surfaces. The channel has the same channel doping type as the S/D doping type. A first gate is in direct contact with one of the channel surfaces. One or more second gates is in direct contact with a respective second channel surface. The gates are doped with a gate doping that has a gate doping type opposite of the channel doping type. A p-n junction (junction gate) is formed where the gates and channel surfaces are in direct contact. The first and second gates are electrically connected so a voltage applied to the first and second gates creates at least two depletion regions in each of the channels. In some embodiments, the junction gates are formed all-around the channel surfaces. As a result, the current flowing in the channels between the source and drain can be controlled with less voltage applied to the gates and less power consumption.

    Stacked vertical tunnel FET methods

    公开(公告)号:US11424361B2

    公开(公告)日:2022-08-23

    申请号:US17227302

    申请日:2021-04-10

    摘要: A first vertical T-FET has a source heavily doped with a source concentration of a source-type dopant, a drain doped with a drain concentration of a drain-type dopant, and a channel between the source and drain. The source, channel, and drain are stacked vertically in a fin or pillar perpendicular to a substrate. A gate stack encompasses the channel sides and has a drain overlap amount overlapping the drain sides and a source overlap amount overlapping the source sides. External contacts electrically connect the gate and source and/or drain. The source-type dopant and the drain-type dopant are opposite dopant types. In some embodiments, a second vertical T-FET is stacked on the first vertical T-FET. Different VT-FET devices are made by changing the materials, doping types and levels, and connections to the sources, channels, and drains. Device characteristics are designed/changed by changing the amount of source and drain overlaps of the gate stack(s).

    LOW VOLTAGE/POWER JUNCTION FET WITH ALL-AROUND JUNCTION GATE

    公开(公告)号:US20210288187A1

    公开(公告)日:2021-09-16

    申请号:US16817571

    申请日:2020-03-12

    摘要: A Junction Field Effect Transistor (JFET) has a source and a drain disposed on a substrate. The source and drain have an S/D doping with an S/D doping type. Two or more channels are electrically connected in parallel between the source and drain and can carry a current between the source and drain. Each of the channels has two or more channel surfaces. The channel has the same channel doping type as the S/D doping type. A first gate is in direct contact with one of the channel surfaces. One or more second gates is in direct contact with a respective second channel surface. The gates are doped with a gate doping that has a gate doping type opposite of the channel doping type. A p-n junction (junction gate) is formed where the gates and channel surfaces are in direct contact. The first and second gates are electrically connected so a voltage applied to the first and second gates creates at least two depletion regions in each of the channels. In some embodiments, the junction gates are formed all-around the channel surfaces. As a result, the current flowing in the channels between the source and drain can be controlled with less voltage applied to the gates and less power consumption.

    Stacked vertical tunnel FET devices

    公开(公告)号:US11094819B2

    公开(公告)日:2021-08-17

    申请号:US16705662

    申请日:2019-12-06

    摘要: A first vertical T-FET has a source heavily doped with a source concentration of a source-type dopant, a drain doped with a drain concentration of a drain-type dopant, and a channel between the source and drain. The source, channel, and drain are stacked vertically in a fin or pillar perpendicular to a substrate. A gate stack encompasses the channel sides and has a drain overlap amount overlapping the drain sides and a source overlap amount overlapping the source sides. External contacts electrically connect the gate and source and/or drain. The source-type dopant and the drain-type dopant are opposite dopant types. In some embodiments, a second vertical T-FET is stacked on the first vertical T-FET. Different VT-FET devices are made by changing the materials, doping types and levels, and connections to the sources, channels, and drains. Device characteristics are designed/changed by changing the amount of source and drain overlaps of the gate stack(s).

    FINFET RADIATION DOSIMETER
    10.
    发明申请

    公开(公告)号:US20210083139A1

    公开(公告)日:2021-03-18

    申请号:US16572102

    申请日:2019-09-16

    IPC分类号: H01L31/119 H05G1/28 G01T1/02

    摘要: A semiconductor radiation monitor (i.e., dosimeter) is provided that has an oxide charge storage region located on a first side of a semiconductor fin and a functional gate structure located on a second side of the semiconductor fin that is opposite the first side. Charges are created in the oxide charge storage region that is located on the first side of the semiconductor fin and detected on the second side of the semiconductor fin by the functional gate structure. Multiple semiconductor fins in parallel can form a dense and very sensitive semiconductor radiation monitor.