Abstract:
Sensing the level of a liquid in a vessel by the pulse transit time technique is done by means of an ultrasonic transducer mounted above the highest-permissible level in the vessel which emits ultrasonic transmission pulses to the surface of the liquid and receives the ultrasonic echo pulses reflected from the liquid surface. The level in the vessel is established from the transit time of the ultrasonic pulses. To detect an overfill when the ultrasonic transducer is immersed in the liquid the decaying output signal of the ultrasonic transducer generated by the ringing of the ultrasonic transducer following the end of the each ultrasonic transmission pulse is analyzed. In this arrangement the fact is exploited that due to the better coupling of the ultrasonic transducer to the liquid than to air the ringing duration is shorter when the ultrasonic transducer is covered by the liquid.
Abstract:
For monitoring a predetermined level of a liquid in a container an ultrasonic transducer is fitted on the outer surface of the container wall at a measurement point situated at the height of the level to be monitored. The ultrasonic transducer when excited by an alternating voltage pulse having a given transmission frequency which equals the thickness resonant frequency of the container wall, transfers an ultrasonic transmission pulse to the container wall and converts ultrasonic vibrations, generated by reflected echo pulses, into electrical reception signals that are transferred to an evaluation circuit. In the evaluation circuit, on the one hand the presence or absence of echo signals is detected, and, on the other, the ultrasonic vibrations generated by the after-vibration of the container wall at the end of the transmission pulse are evaluated. As a result of this it can be determined with high error detection reliability whether the measurement point is covered by the liquid or not and whether the measurement arrangement is working satisfactorily.
Abstract:
For monitoring a predetermined level of a liquid in a container an ultrasonic transducer is fitted on the outer surface of the container wall at a measurement point situated at the height of the level to be monitored. The ultrasonic transducer contains a piezoelectric element which generates, when excited by an alternating voltage pulse having a given transmission frequency, an ultrasonic transmission pulse which is transferred via a diaphragm to the container wall and which converts ultrasonic vibrations transferred from the container wall to the ultrasonic transducer into electrical reception signals. So that the piezoelectric element for given dimensions can be operated in a large frequency range, and so that a good adaptation to the diaphragm is achieved, the piezoelectric element consists of a porous piezoelectric ceramic having a type 3--3 connectivity.
Abstract:
For monitoring a predetermined level of a liquid in a container an ultrasonic transducer is fitted on the outer surface of the container wall at a measurement point situated at the height of the level to be monitored. The ultrasonic transducer contains a piezoelectric element which generates, when excited by an alternating voltage pulse having a given transmission frequency, an ultrasonic transmission pulse which is transferred via a diaphragm to the container wall and which converts ultrasonic vibrations transferred from the container wall to the ultrasonic transducer into electrical reception signals. The diaphragm comprises on the side facing the container wall protuberances which adjoin the container wall. Between the diaphragm and the container wall a coupling layer is arranged, the thickness of which is determined by the height of the protuberances. As a result of this the formation of a layer of air between the diaphragm and the container wall is prevented and a jump in impedance avoided so that a good acoustical coupling exists between the diapragm and the container wall.
Abstract:
An apparatus for establishing and/or monitoring a pre-determined filling level in a container is provided, in which the reception signal (E) corresponds to the desired measurement signal and in which a fixed phase difference (.DELTA..phi..sub.R), which is independent of the oscillation quality of the apparatus, exists between the transmission signal and the reception signal (E) at the resonant frequency (f.sub.r) of the mechanical oscillatory structure (1). The apparatus comprises a mechanical oscillatory structure (1) and a piezoelectric element (2), which has at least three regions, a first region (I) having a transmission electrode (21), a second region (II) having a first reception electrode (22) and a third region (III) having a second reception electrode (23), the two reception electrodes (22, 23) having an identical form and being arranged symmetrically with respect to one another and to the transmission electrode (21), and in the first and in the second region (I, II), the piezoelectric element (2) having a polarization which is in the opposite direction to a polarization of the third region (III). The reception signal (E) is equal to the difference between a first signal (E.sub.1), which is present at the first reception electrode (22), and a second signal (E.sub.2), which is present at the second reception electrode (23).
Abstract:
A description is given of a sturdy device for establishing and/or monitoring a predetermined filling level in a container, which device exhibits a housing (1), two oscillating rods (3, 4) projecting into the container, a first diaphragm (2) which is fixedly clamped, at its border, into the housing (1), a second diaphragm (6, 6') which is arranged parallel to said first diaphragm in the interior of the housing (1), a piezoelectric element (7, 7') which is arranged on the second diaphragm (6, 6') and is intended for receiving and converting oscillations into an electric output signal and for inducing bending oscillations in the second diaphragm (6, 6'), and in the case of which device the mode of oscillation produced by the piezoelectric element (7, 7') corresponds to the mode of oscillation utilized for inducing oscillation in the oscillating rods (3, 4).
Abstract:
The invention relates to an electromechanical drive or a sensor element composed of piezoelectric elements arranged in the form of a stack. The drive or the sensor element is intended for measurement instruments and operates even at very high temperatures. The new drive or the new sensor element (10) for this purpose comprises a number of piezoelectric ceramic layers (12a-f), with electrode layers (16a-e) in each case being arranged between two mutually facing surfaces of directly adjacent piezoelectric ceramic layers. Connectors (18a,b) in the form of wires run in grooves (14a-d) in the electrode layers (16a-e) in order to make electrical contact with the electrode layers (16a-e), and are passed out of the electrode layers (16a-e).
Abstract:
A device for determining and/or monitoring the level of a medium in a container or for ascertaining the density of a medium in the container embodied as a vibration detector. According to the invention the vibration detector still functions reliably even under extreme process conditions and upon abrupt changes in process conditions. The vibration detector has a tubular inner part provided, which is dimensioned such that it is positioned between the housing wall and a drive/receiving unit, and that the tubular inner part is connected to the housing or to the diaphragm.
Abstract:
An assembly for monitoring a predetermined level of a material in a container comprises two ultrasonic transducers mounted on the container in line with the level to be monitored, such that an interspace exists between the ultrasonic transducers into which the material enters on attaining the level to be monitored. The one ultrasonic transducer is an emitter transducer which at predetermined points in time for emitting ultrasonic pulses is energized by a frequency which is so low that the ultrasonic pulses are transmitted through the interspace to the detector transducer even when the interspace is filled with air. The other ultrasonic transducer is a detector transducer which converts detected ultrasonic pulses into electrical detection signals. To determine whether or not material is in the interspace between the ultrasonic transducers a check is made as to whether the detector transducer outputs after each point in time of emission a detection signal in a time interval corresponding to the transit time of the ultrasonic pulses from the emitter transducer to the detector transducer in air.
Abstract:
An arrangement for establishing and/or monitoring a predetermined filling level is described, in which a fixed phase difference (.DELTA..phi..sub.R), which is independent of the oscillation quality of the arrangement, exists between a transmission signal and a reception signal (E) at the resonant frequency of the mechanical oscillatory structure. This arrangement comprises a mechanical oscillatory structure (1) at least one transmitter (3), which excites the oscillatory structure (1) to produce oscillations, and two piezoelectric elements as receivers (24a, 24b). In accordance with a first variant, a first signal line (241a) of the first receiver (24a) is connected to an electrode which is arranged on a surface which bounds the first receiver (24a) in a direction opposite to its polarization. A second signal line (241b) of the second receiver (24b) is connected to the transmission signal line (5) via an electrical impedance (Z). The second signal line (241b) of the second receiver (24b) is connected to an electrode which is arranged on a surface which bounds the receiver (24b) in the direction of its polarization. The reception signal (E) is equal to the difference between the two electrical signals (E.sub.1, E.sub.2).