Abstract:
Briefly, in accordance with one or more embodiments, an apparatus comprises a processor to compute depth values for one or more 4×4 blocks of pixels using 16 source interpolators and 8 destination interpolators on an incoming fragment of pixel data if the destination is in min/max format, and a memory to store a depth test result performed on the one or more 4×4 blocks of pixels. Otherwise the processor is to compute depth values for one or more 8×4 blocks of pixels using 16 source interpolators and 16 destination interpolators if the destination is in plane format.
Abstract:
Briefly, in accordance with one or more embodiments, an apparatus comprises a processor to compute depth values for one or more 4×4 blocks of pixels using 16 source interpolators and 8 destination interpolators on an incoming fragment of pixel data if the destination is in min/max format, and a memory to store a depth test result performed on the one or more 4×4 blocks of pixels. Otherwise the processor is to compute depth values for one or more 8×4 blocks of pixels using 16 source interpolators and 16 destination interpolators if the destination is in plane format.
Abstract:
Methods, systems and apparatuses may provide for technology that identifies first graphics data that is associated with spatially proximate positions. The technology identifies second graphics data that is associated with spatially proximate positions, and interleaves the first and the second graphics data across a plurality of storage tiles.
Abstract:
Briefly, in accordance with one or more embodiments, a processor performs a coarse depth test on pixel data, and performs a final depth test on the pixel data. Coarse depth data is stored in a coarse depth cache, and per pixel depth data is stored in a per pixel depth cache. If a result of the coarse depth test is ambiguous, the processor is to read the per pixel depth data from the per pixel depth cache, and to update the coarse depth data with the per pixel depth data if the per pixel depth data has a smaller depth range than the coarse depth data.
Abstract:
Examples described herein relate to a decompression engine that can request compressed data to be transferred over a memory bus. In some cases, the memory bus is a width that requires multiple data transfers to transfer the requested data. In a case that requested data is to be presented in-order to the decompression engine, a re-order buffer can be used to store entries of data. When a head-of-line entry is received, the entry can be provided to the decompression engine. When a last entry in a group of one or more entries is received, all entries in the group are presented in-order to the decompression engine. In some examples, a decompression engine can borrow memory resources allocated for use by another memory client to expand a size of re-order buffer available for use. For example, a memory client with excess capacity and a slowest growth rate can be chosen to borrow memory resources from.
Abstract:
Methods, systems and apparatuses may provide for technology that identifies first graphics data that is associated with spatially proximate positions. The technology identifies second graphics data that is associated with spatially proximate positions, and interleaves the first and the second graphics data across a plurality of storage tiles.
Abstract:
Examples described herein relate to a decompression engine that can request compressed data to be transferred over a memory bus. In some cases, the memory bus is a width that requires multiple data transfers to transfer the requested data. In a case that requested data is to be presented in-order to the decompression engine, a re-order buffer can be used to store entries of data. When a head-of-line entry is received, the entry can be provided to the decompression engine. When a last entry in a group of one or more entries is received, all entries in the group are presented in-order to the decompression engine. In some examples, a decompression engine can borrow memory resources allocated for use by another memory client to expand a size of re-order buffer available for use. For example, a memory client with excess capacity and a slowest growth rate can be chosen to borrow memory resources from.
Abstract:
Briefly, in accordance with one or more embodiments, an apparatus comprises a processor to compute depth values for one or more 4×4 blocks of pixels using 16 source interpolators and 8 destination interpolators on an incoming fragment of pixel data if the destination is in min/max format, and a memory to store a depth test result performed on the one or more 4×4 blocks of pixels. Otherwise the processor is to compute depth values for one or more 8×4 blocks of pixels using 16 source interpolators and 16 destination interpolators if the destination is in plane format.
Abstract:
Briefly, in accordance with one or more embodiments, a processor performs a coarse depth test on pixel data, and performs a final depth test on the pixel data. Coarse depth data is stored in a coarse depth cache, and per pixel depth data is stored in a per pixel depth cache. If a result of the coarse depth test is ambiguous, the processor is to read the per pixel depth data from the per pixel depth cache, and to update the coarse depth data with the per pixel depth data if the per pixel depth data has a smaller depth range than the coarse depth data.
Abstract:
By packing the depth data in a way that is independent of the number of samples, so that memory bandwidth is the same regardless of the number of samples, higher numbers of samples per pixel may be used without adversely affecting buffer cost. In some embodiments, the number of pixels per clock in a first level depth test may be increased by operating in the pixel domain, whereas previous solutions operated at the sample level.