Abstract:
In one embodiment, a processor core has one or more execution units, a first memory array having a first protection circuit to provide soft error protection to the first memory array, and a control circuit. A power controller coupled to the core may include a protection control circuit, in response to an update to an operating voltage to be provided to the core, to cause the core to disable the first protection circuit. Other embodiments are described and claimed.
Abstract:
In one embodiment, a processor core has one or more execution units, a first memory array having a first protection circuit to provide soft error protection to the first memory array, and a control circuit. A power controller coupled to the core may include a protection control circuit, in response to an update to an operating voltage to be provided to the core, to cause the core to disable the first protection circuit. Other embodiments are described and claimed.
Abstract:
In an embodiment, a processor includes processing cores to execute instructions; and throttling logic. The throttling logic is to: determine an average capacitance score for execution events in a sliding window; perform frequency throttling when the average capacitance score exceeds a throttling threshold; determine a count of frequency throttling instances; and in response to a determination that the count of frequency throttling instances exceeds a maximum throttling value, increase the throttling threshold and concurrently reduce a baseline frequency. Other embodiments are described and claimed.
Abstract:
In one embodiment, a processor core has one or more execution units, a first memory array having a first protection circuit to provide soft error protection to the first memory array, and a control circuit. A power controller coupled to the core may include a protection control circuit, in response to an update to an operating voltage to be provided to the core, to cause the core to disable the first protection circuit. Other embodiments are described and claimed.
Abstract:
An apparatus is provided, comprising: a first circuitry configured to generate a signal at a voltage level for one or more components; a second circuitry configured to generate a clock at a frequency level for the one or more components; a third circuitry configured to intermittently measure a current level of the signal; a fourth circuitry configured to estimate a first average of the current level of the signal over a first time-window; and a fifth circuitry configured to, in response to the first average being higher than a threshold average current, facilitate regulating one or both the voltage level of the signal or the frequency level of the clock.
Abstract:
In an embodiment, a processor includes processing cores to execute instructions; and throttling logic. The throttling logic is to: determine an average capacitance score for execution events in a sliding window; perform frequency throttling when the average capacitance score exceeds a throttling threshold; determine a count of frequency throttling instances; and in response to a determination that the count of frequency throttling instances exceeds a maximum throttling value, increase the throttling threshold and concurrently reduce a baseline frequency. Other embodiments are described and claimed.
Abstract:
In an embodiment, a processor includes processing cores to execute instructions; and throttling logic. The throttling logic is to: determine an average capacitance score for execution events in a sliding window; perform frequency throttling when the average capacitance score exceeds a throttling threshold; determine a count of frequency throttling instances; and in response to a determination that the count of frequency throttling instances exceeds a maximum throttling value, increase the throttling threshold and concurrently reduce a baseline frequency. Other embodiments are described and claimed.
Abstract:
In one embodiment, a processor core has one or more execution units, a first memory array having a first protection circuit to provide soft error protection to the first memory array, and a control circuit. A power controller coupled to the core may include a protection control circuit, in response to an update to an operating voltage to be provided to the core, to cause the core to disable the first protection circuit. Other embodiments are described and claimed.
Abstract:
In an embodiment, a processor includes at least a first core. The first core includes execution logic to execute operations, and a first event counter to determine a first event count associated with events of a first type that have occurred since a start of a first defined interval. The first core also includes a second event counter to determine a second event count associated with events of a second type that have occurred since the start of the first defined interval, and stall logic to stall execution of operations including at least first operations associated with events of the first type, until the first defined interval is expired responsive to the first event count exceeding a first combination threshold concurrently with the second event count exceeding a second combination threshold. Other embodiments are described and claimed.
Abstract:
In an embodiment, a processor includes processing cores to execute instructions; and throttling logic. The throttling logic is to: determine an average capacitance score for execution events in a sliding window; perform frequency throttling when the average capacitance score exceeds a throttling threshold; determine a count of frequency throttling instances; and in response to a determination that the count of frequency throttling instances exceeds a maximum throttling value, increase the throttling threshold and concurrently reduce a baseline frequency. Other embodiments are described and claimed.