Abstract:
Methods and systems may provide for receiving a set of voltage samples corresponding to a line voltage of a leg in an electrical system and conducting a time domain analysis to identify one or more loads in the electrical system. Additionally, the time domain analysis may be used to identify one or more loads in the electrical system. In one example, conducting the time domain analysis involves classifying events with respect to cross correlation, shape magnitude, transient amplitude, transient duration, run delta and/or standard deviation.
Abstract:
In some embodiments, a voltage regulator device may include a switched capacitor voltage regulator to receive an input voltage and to provide an output voltage to a load, and a control unit to receive information related to a desired output voltage for the switched capacitor voltage regulator and to determine a desired input voltage for the switched capacitor voltage regulator based on the desired output voltage and selected operation mode or modes of switched capacitor voltage regulator. Other embodiments are disclosed and claimed.
Abstract:
Methods of increasing an energy density of an energy storage device involve increasing the capacitance of the energy storage device by depositing a material into a porous structure of the energy storage device using an atomic layer deposition process, by performing a procedure designed to increase a distance to which an electrolyte penetrates within channels of the porous structure, or by placing a dielectric material into the porous structure. Another method involves annealing the energy storage device in order to cause an electrically conductive substance to diffuse to a surface of the structure and form an electrically conductive layer thereon. Another method of increasing energy density involves increasing the breakdown voltage and another method involves forming a pseudocapacitor. A method of increasing an achievable power output of an energy storage device involves depositing an electrically conductive material into the porous structure.
Abstract:
Methods and systems may provide for identifying, and distinguishing between electrical loads using time and frequency domain analysis of at least one property of an alternating current during a transient event. In one example, time and frequency domain features may be computed from the voltage signatures of an ON event. A support vector machine classifier may then be trained using the feature vectors (including the time and frequency domain features) for known devices. The trained support vector machine may classify or identify an unknown electrical device using a feature vector as input.