Abstract:
A processor of an aspect includes a plurality of packed data registers, and a decode unit to decode an instruction. The instruction is to indicate a packed data register of the plurality of packed data registers that is to store a source packed memory address information. The source packed memory address information is to include a plurality of memory address information data elements. An execution unit is coupled with the decode unit and the plurality of packed data registers, the execution unit, in response to the instruction, is to load a plurality of data elements from a plurality of memory addresses that are each to correspond to a different one of the plurality of memory address information data elements, and store the plurality of loaded data elements in a destination storage location. The destination storage location does not include a register of the plurality of packed data registers.
Abstract:
Methods and apparatuses to control cache line coherency are described. A processor may include a first core having a cache to store a cache line, a second core to send a request for the cache line from the first core, moving logic to cause a move of the cache line between the first core and a memory and to update a tag directory of the move, and cache line coherency logic to create a chain home in the tag directory from the request to cause the cache line to be sent from the tag directory to the second core. A method to control cache line coherency may include creating a chain home in a tag directory from a request for a cache line in a first processor core from a second processor core to cause the cache line to be sent from the tag directory to the second processor core.
Abstract:
Systems and methods for multicast tree-based data distribution in a distributed shared cache. An example processing system comprises: a plurality of processing cores, each processing core communicatively coupled to a cache; a tag directory associated with caches of the plurality of processing cores; a shared cache associated with the tag directory; a processing logic configured, responsive to receiving an invalidate request with respect to a certain cache entry, to: allocate, within the shared cache, a shared cache entry corresponding to the certain cache entry; transmit, to at least one of: a tag directory or a processing core that last accessed the certain entry, an update read request with respect to the certain cache entry; and responsive to receiving an update of the certain cache entry, broadcast the update to at least one of: one or more tag directories or one or more processing cores identified by a tag corresponding to the certain cache entry.
Abstract:
A floating point multiply-add unit having inputs coupled to receive a floating point multiplier data element, a floating point multiplicand data element, and a floating point addend data element. The multiply-add unit including a mantissa multiplier to multiply a mantissa of the multiplier data element and a mantissa of the multiplicand data element to calculate a mantissa product. The mantissa multiplier including a most significant bit portion to calculate most significant bits of the mantissa product, and a least significant bit portion to calculate least significant bits of the mantissa product. The mantissa multiplier has a plurality of different possible sizes of the least significant bit portion. Energy consumption reduction logic to selectively reduce energy consumption of the least significant bit portion, but not the most significant bit portion, to cause the least significant bit portion to not calculate the least significant bits of the mantissa product.
Abstract:
Methods and apparatuses to control cache line coherency are described. A processor may include a first core having a cache to store a cache line, a second core to send a request for the cache line from the first core, moving logic to cause a move of the cache line between the first core and a memory and to update a tag directory of the move, and cache line coherency logic to create a chain home in the tag directory from the request to cause the cache line to be sent from the tag directory to the second core. A method to control cache line coherency may include creating a chain home in a tag directory from a request for a cache line in a first processor core from a second processor core to cause the cache line to be sent from the tag directory to the second processor core.
Abstract:
Architectures, apparatus and systems employing scalable multi-layer 2D-mesh routers. A 2D router mesh comprises bi-direction pairs of linked paths coupled between pairs of IO interfaces and configured in a plurality of rows and columns forming a 2D mesh. Router nodes are located at the intersections of the rows and columns, and are configured to forward data units between IO inputs and outputs coupled to the mesh at its edges through use of shortest path routes defined by agents at the IO interfaces. Multiple instances of the 2D meshes may be employed to support bandwidth scaling of the router architecture. One implementation of a multi-layer 2D mesh is built using a standard tile that is tessellated to form a 2D array of standard tiles, with each 2D mesh layer offset and overlaid relative to the other 2D mesh layers. IO interfaces are then coupled to the multi-layer 2D mesh via muxes/demuxes and/or crossbar interconnects.
Abstract:
A processor of an aspect includes a plurality of packed data registers, and a decode unit to decode an instruction. The instruction is to indicate a packed data register of the plurality of packed data registers that is to store a source packed memory address information. The source packed memory address information is to include a plurality of memory address information data elements. An execution unit is coupled with the decode unit and the plurality of packed data registers, the execution unit, in response to the instruction, is to load a plurality of data elements from a plurality of memory addresses that are each to correspond to a different one of the plurality of memory address information data elements, and store the plurality of loaded data elements in a destination storage location. The destination storage location does not include a register of the plurality of packed data registers.
Abstract:
A floating point multiply-add unit having inputs coupled to receive a floating point multiplier data element, a floating point multiplicand data element, and a floating point addend data element. The multiply-add unit including a mantissa multiplier to multiply a mantissa of the multiplier data element and a mantissa of the multiplicand data element to calculate a mantissa product. The mantissa multiplier including a most significant bit portion to calculate most significant bits of the mantissa product, and a least significant bit portion to calculate least significant bits of the mantissa product. The mantissa multiplier has a plurality of different possible sizes of the least significant bit portion. Energy consumption reduction logic to selectively reduce energy consumption of the least significant bit portion, but not the most significant bit portion, to cause the least significant bit portion to not calculate the least significant bits of the mantissa product.
Abstract:
Method and apparatus to efficiently manage data in caches. Data in caches may be managed based on priorities assigned to the data. Data may be requested by a process using a virtual address of the data. The requested data may be assigned a priority by a component in a computer system called an address range priority assigner (ARP). The ARP may assign a particular priority to the requested data if the virtual address of the requested data is within a particular range of virtual addresses. The particular priority assigned may be high priority and the particular range of virtual addresses may be smaller than a cache's capacity.
Abstract:
Hardware compilation and/or translation with fault detection and roll back functionality are disclosed. Compilation and/or translation logic receives programs encoded in one language, and encodes the programs into a second language including instructions to support processor features not encoded into the original language encoding of the programs. In one embodiment, an execution unit executes instructions of the second language including an operation-check instruction to perform a first operation and record the first operation result for a comparison, and an operation-test instruction to perform a second operation and a fault detection operation by comparing the second operation result to the recorded first operation result. In some embodiments, an execution unit executes instructions of the second language including commit instructions to record execution checkpoint states of registers mapped to architectural registers, and roll-back instructions to restore the registers mapped to architectural registers to previously recorded execution checkpoint states.