Abstract:
A mobile terminal device includes a receiver circuit and a processing circuit. The receiver circuit is configured to receive a plurality of reference signal patterns from a plurality of transmission locations, wherein each of the plurality of reference signal patterns corresponds to a respective transmission location of the plurality of transmission locations. The processing circuit is configured to determine a synchronization offset estimate for each of the plurality of transmission locations based on the plurality of reference signal patterns to generate a plurality of synchronization offset estimates; determine if a minimum-valued synchronization offset estimate of the plurality of synchronization offset estimates satisfies predefined criteria; and determine a reception time window for processing data based on the minimum-valued synchronization offset estimate if the minimum-valued synchronization offset estimate satisfies the predefined criteria.
Abstract:
A mobile terminal device may include a receiver circuit and a processing circuit. The receiver circuit may be configured to receive a composite signal comprising a plurality of reference signal patterns associated with a plurality of transmit locations. The processing circuit may be configured to identify a first reference signal pattern and a second reference signal pattern from the plurality of reference signal patterns; generate a first offset estimate and a second offset estimate based on the first reference signal pattern and the second reference signal pattern; determine a refined offset estimate based on the first offset estimate and the second offset estimate, wherein first offset estimate has a greater offset estimation range than the second offset estimate.
Abstract:
In embodiments, apparatuses, methods, and storage media may be described for distinguishing, by a user equipment (UE), a reference signal (RS) transmitted by a cell that may have a same identifier (ID) as another cell in a network. In embodiments, a muting pattern, a time offset, or a virtual cell identifier (VCID) may be used to generate an RS sequence or RS resource allocation.
Abstract:
In embodiments, apparatuses, methods, and storage media may be described for distinguishing, by a user equipment (UE), a reference signal (RS) transmitted by a cell that may have a same identifier (ID) as another cell in a network. In embodiments, a muting pattern, a time offset, or a virtual cell identifier (VCID) may be used to generate an RS sequence or RS resource allocation.
Abstract:
A mobile terminal device may include a receiver circuit and a processing circuit. The receiver circuit may be configured to receive a composite signal comprising a plurality of reference signal patterns associated with a plurality of transmit locations. The processing circuit may be configured to identify a first reference signal pattern and a second reference signal pattern from the plurality of reference signal patterns; generate a first offset estimate and a second offset estimate based on the first reference signal pattern and the second reference signal pattern; determine a refined offset estimate based on the first offset estimate and the second offset estimate, wherein first offset estimate has a greater offset estimation range than the second offset estimate.
Abstract:
In embodiments, apparatuses, methods, and storage media may be described for distinguishing, by a user equipment (UE), a reference signal (RS) transmitted by a cell that may have a same identifier (ID) as another cell in a network. In embodiments, a muting pattern, a time offset, or a virtual cell identifier (VCID) may be used to generate an RS sequence or RS resource allocation.
Abstract:
Embodiments of the present disclosure describe systems, devices, and methods that may provide channel estimation and compensation in high speed scenarios, which may include user equipment carried on a high speed train. Embodiments may employ cell-specific reference signal (CRS)-based time-domain channel estimation and compensation.
Abstract:
Technologies described herein provide mechanisms for a legacy UE traveling at a high speed (e.g., in a high speed train) to estimate the opposite Doppler shifts separately for different RRHs in an SFN so that the UE can more effectively receive a payload assigned by the SFN. In addition, the present disclosure provides UE signal process mechanisms to improve HST receiver performance such that good demodulation performance can be achieved without significant impacts on UE implementation. The present disclosure provides a specific framework to improve cellular SFN system operation using a combination of an SFN data signal transmissions from different RRHs and orthogonal non-SFN reference signal transmissions from different RRHs. A UE may estimate a propagation channel for each RRH using a reference signal and use this information to improve the demodulation of the combined SFN data signal.
Abstract:
A method and mobile communications device for receiving a composite signal composed of a plurality of resource elements, the plurality of resource elements including: a plurality of data resource elements subject to interference; measuring a first noise plus interference level on at least one predefined resource element from the plurality of resource elements; measuring a noise plus interference level on the plurality of data resource elements subject to interference; determining a baseline noise plus interference level common to the plurality of data resource elements subject to interference; and generating a hybrid noise plus interference level by replacing the baseline noise plus interference level with the first noise plus interference level from the at least one predefined resource element.
Abstract:
A method and mobile communications device for receiving a composite signal composed of a plurality of resource elements, the plurality of resource elements including: a plurality of data resource elements subject to interference; measuring a first noise plus interference level on at least one predefined resource element from the plurality of resource elements; measuring a noise plus interference level on the plurality of data resource elements subject to interference; determining a baseline noise plus interference level common to the plurality of data resource elements subject to interference; and generating a hybrid noise plus interference level by replacing the baseline noise plus interference level with the first noise plus interference level from the at least one predefined resource element.