Abstract:
A method and circuit are provided for implementing enhanced scan data testing for test time reduction and decreased scan data interdependence with on product multiple input signature register (OPMISR++) testing, and a design structure on which the subject circuit resides. A respective Pseudo-Random Pattern Generator (PRPG) provides channel input patterns to a respective associated scan channel used for the OPMISR++ diagnostics. Control inputs are coupled to the Pseudo-Random Pattern Generator (PRPG) providing PRPG control distribution. The PRPG selectively provides controlled channel input patterns for the respective scan channel responsive to the control inputs.
Abstract:
A method of performing a dynamic built-in self-test (BIST). The method includes performing a first test of a circuit on a semiconductor chip. The first test includes a first switch factor. The circuit during the first test is monitored with one or more sensors. A first sensor value of one or more sensors monitoring the circuit is determined. It is also determined whether the first sensor value is within a range of a programmable constant. A second switch factor is determined in response to determining that the first sensor value outside the range of the programmable constant.
Abstract:
A method and structure tests a system on a chip (SoC) or other integrated circuit having multiple cores for chip characterization to produce a partial good status. A Self Evaluation Engine (SEE) on each core creates a quality metric or partial good value for the core. The SEE executes one or more tests to create a characterization signature for the core. The SEE then compares the characterization signature of a core with a characterization signature of neighboring cores to determine the partial good value for the core. The SEE may output a result to create a full characterization map for detailed diagnostics or a partial good map with values for all cores to produce a partial good status for the entire SoC.
Abstract:
A method and structure tests a system on a chip (SoC) or other integrated circuit having multiple cores for chip characterization to produce a partial good status. A Self Evaluation Engine (SEE) on each core creates a quality metric or partial good value for the core. The SEE executes one or more tests to create a characterization signature for the core. The SEE then compares the characterization signature of a core with a characterization signature of neighboring cores to determine the partial good value for the core. The SEE may output a result to create a full characterization map for detailed diagnostics or a partial good map with values for all cores to produce a partial good status for the entire SoC.
Abstract:
A method and circuit for implementing register array repair using Logic Built In Self Test (LBIST), and a design structure on which the subject circuit resides are provided. Register array repair includes identifying and creating a list of any repairable Register Arrays (RAs) that effect an LBIST fail result. Next a repair solution is detected for each of the repairable Register Arrays (RAs) isolating a failing location for the detected repair solution for each array.
Abstract:
A method and circuit for implementing enhanced diagnostics with intelligent pattern combination in automatic test pattern generation (ATPG), and a design structure on which the subject circuit resides are provided. A random fault is selected in the design. A test pattern is generated and applied the test pattern to a design under test to test the selected random fault. The test is re-simulated to determine faults that are covered by the applied test pattern. A next iteration of test pattern generation includes selecting a fault that is based upon the previous test pattern generation for generating new test patterns.
Abstract:
A method and circuit are provided for implementing enhanced scan data testing for test time reduction and decreased scan data interdependence with on product multiple input signature register (OPMISR++) testing, and a design structure on which the subject circuit resides. A respective Pseudo-Random Pattern Generator (PRPG) provides channel input patterns to a respective associated scan channel used for the OPMISR++ diagnostics. Control inputs are coupled to the Pseudo-Random Pattern Generator (PRPG) providing PRPG control distribution. The PRPG selectively provides controlled channel input patterns for the respective scan channel responsive to the control inputs.
Abstract:
A method and system for implementing enhanced scan chain diagnostics via a bypass multiplexing structure. A full scan chain structure is partitioned into a plurality of separate chains, such as three separate partitioned chains, with bypass multiplexers for implementing enhanced scan chain diagnostics. Each of the separate partitioned chains includes bypass multiplexers with independent controls enabling scan data being routed through multiple different independent scan paths, potentially bypassing failing latches. The information acquired from a combination of full scans and partitioned scans is used for scan failure isolation to enable pinpoint identification of stuck-at-zero (SA0) and stuck-at-one (SA1) faults in the scan chain.
Abstract:
A method and system for implementing enhanced scan chain diagnostics via a bypass multiplexing structure. A full scan chain structure is partitioned into a plurality of separate chains, such as three separate partitioned chains, with bypass multiplexers for implementing enhanced scan chain diagnostics. Each of the separate partitioned chains includes bypass multiplexers with independent controls enabling scan data being routed through multiple different independent scan paths, potentially bypassing failing latches. The information acquired from a combination of full scans and partitioned scans is used for scan failure isolation to enable pinpoint identification of stuck-at-zero (SA0) and stuck-at-one (SA1) faults in the scan chain.
Abstract:
A method and apparatus are provided to test an integrated circuit by identifying first and second components of an integrated circuit. The first and second components may share a relationship that causes the first and second components to generate a matching binary output in response to an input to the integrated circuit. A tap point may be selected within the integrated circuit. The tap point may be located at a point in the integrated circuit where an insertion of a bypass structure would affect the relationship. The bypass structure may be inserted at the tap point, and the bypass structure may be used to conduct a test of the integrated circuit.