摘要:
An interconnection component includes a semiconductor material layer having a first surface and a second surface opposite the first surface and spaced apart in a first direction. At least two metalized vias extend through the semiconductor material layer. A first pair of the at least two metalized vias are spaced apart from each other in a second direction orthogonal to the first direction. A first insulating via in the semiconductor layer extends from the first surface toward the second surface. The insulating via is positioned such that a geometric center of the insulating via is between two planes that are orthogonal to the second direction and that pass through each of the first pair of the at least two metalized vias. A dielectric material at least partially fills the first insulating via or at least partially encloses a void in the insulating via.
摘要:
In a vertically integrated microelectronic package, a first microelectronic device is coupled to an upper surface of a circuit platform in a wire bond-only surface area thereof. Wire bond wires are coupled to and extends away from an upper surface of the first microelectronic device. A second microelectronic device in a face-down orientation is coupled to upper ends of the wire bond wires in a surface mount-only area. The second microelectronic device is located above and at least partially overlaps the first microelectronic device. A protective layer is disposed over the circuit platform and the first microelectronic device. An upper surface of the protective layer has the surface mount-only area. The upper surface of the protective layer has the second microelectronic device disposed thereon in the face-down orientation in the surface mount-only area for coupling to the upper ends of the first wire bond wires.
摘要:
Package-on-package (“PoP”) devices with WLP (“WLP”) components with dual RDLs (“RDLs”) for surface mount dies and methods therefor. In a PoP, a first IC die surface mount coupled to an upper surface of a package substrate. Conductive lines are coupled to the upper surface of the package substrate in a fan-out region. A molding layer is formed over the upper surface of the package substrate. A first and a second WLP microelectronic component are located at a same level above an upper surface of the molding layer respectively surface mount coupled to sets of upper portions of the conductive lines. Each of the first and the second WLP microelectronic components have a second IC die located between a first RDL and a second RDL. A third and a fourth IC die are respectively surface mount coupled over the first and the second WLP microelectronic components.
摘要:
Dies-on-package devices and methods therefor are disclosed. In a dies-on-package device, a first IC die is surface mount coupled to an upper surface of a package substrate. Conductive lines are coupled to the upper surface of the package substrate in a fan-out region with respect to the first IC die. A molding layer is formed over the upper surface of the package substrate, around sidewall surfaces of the first IC die, and around bases and shafts of the conductive lines. A plurality of second IC dies is located at a same level above an upper surface of the molding layer respectively surface mount coupled to sets of upper portions of the conductive lines. The plurality of second IC dies are respectively coupled to the sets of the conductive lines in middle third portions respectively of the plurality of second IC dies for corresponding fan-in regions thereof.
摘要:
Package-on-package (“PoP”) devices with upper RDLs of WLP (“WLP”) components and methods therefor are disclosed. In a PoP device, a first IC die is surface mount coupled to an upper surface of the package substrate. Conductive lines are coupled to the upper surface of the package substrate in a fan-out region with reference to the first IC. A molding layer is formed over the upper surface of the package substrate. A first and a second WLP microelectronic component is located at a same level above an upper surface of the molding layer respectively surface mount coupled to sets of upper portions of the conductive lines. Each of the first and the second WLP microelectronic components have a second IC die located below a first RDL respectively thereof. A third and a fourth IC die are respectively surface mount coupled over the first and the second WLP microelectronic components.
摘要:
Apparatuses relating generally to a microelectronic package having protection from interference are disclosed. In an apparatus thereof, a substrate has an upper surface and a lower surface opposite the upper surface and has a ground plane. A first microelectronic device is coupled to the upper surface of the substrate. Wire bond wires are coupled to the ground plane for conducting the interference thereto and extending away from the upper surface of the substrate. A first portion of the wire bond wires is positioned to provide a shielding region for the first microelectronic device with respect to the interference. A second portion of the wire bond wires is not positioned to provide the shielding region. A second microelectronic device is coupled to the substrate and located outside of the shielding region. A conductive surface is over the first portion of the wire bond wires for covering the shielding region.
摘要:
A microelectronic package can include a support element having first and second surfaces and substrate contacts at the first or second surface, zeroth and first stacked microelectronic elements electrically coupled with the substrate contacts, and terminals at the second surface electrically coupled with the microelectronic elements. The second surface can have a southwest region encompassing entire lengths of south and west edges of the second surface and extending in orthogonal directions from the south and west edges one-third of each distance toward north and east edges of the second surface, respectively. The terminals can include first terminals at a southwest region of the second surface, the first terminals configured to carry address information usable by circuitry within the microelectronic package to determine an addressable memory location from among all the available addressable memory locations of the memory storage arrays of at least one of the zeroth or first microelectronic elements.
摘要:
A microelectronic package can include a substrate and a microelectronic element. The substrate can include terminals comprising at least first power terminals and other terminals in an area array at a surface of the substrate. The substrate can also include a power plane element electrically coupled to the first power terminals. The area array can have a peripheral edge and a continuous gap between the terminals extending inwardly from the peripheral edge in a direction parallel to the surface. The terminals on opposite sides of the gap can be spaced from one another by at least 1.5 times a minimum pitch of the terminals. The power plane element can extend within the gap from at least the peripheral edge at least to the first power terminals. Each first power terminal can be separated from the peripheral edge by two or more of the other terminals.
摘要:
A microelectronic package has terminals at a surface of a substrate having first and second half areas, each half area extending from a diagonal that bisects the first surface and a respective opposite corner of the first surface. Terminals for carrying data and address information in the first half area provide first memory channel access to a first memory storage array, and terminals for carrying data and address information in the second half area provide second memory channel access to a second memory storage array. The package may include first and second microelectronic elements overlying a same surface of the substrate which may be stacked in transverse orientations.
摘要:
A microelectronic package can include a substrate comprising a dielectric element having first and second opposite surfaces, and a microelectronic element having a face extending parallel to the first surface. The substrate can also include a plurality of peripheral edges extending between the first and second surfaces defining a generally rectangular or square periphery of the substrate. The substrate can further include a plurality of contacts and terminals, the contacts being at the first surface, the terminals being at at least one of the first or second surfaces. The microelectronic elements can have a plurality of edges bounding the face, and a plurality of element contacts at the face electrically coupled with the terminals through the contacts of the substrate. Each edge of the microelectronic element can be oriented at an oblique angle with respect to the peripheral edges of the substrate.