Abstract:
A battery module includes a power assembly including a first battery cell and a second battery cell in a stacked orientation relative to each other, wherein the first battery cell comprises a first tab electrode extending therefrom, and wherein the second battery cell comprises a second tab electrode extending therefrom. The battery module also includes an interconnect assembly configured to facilitate electrically coupling the first tab electrode with the second tab electrode with the first and second battery cells in the stacked orientation. The interconnect assembly includes a coupling structure about which the first and second tab electrodes at least partially conform. In addition, the interconnect assembly includes a clamp disposed about the coupling structure and the first and second tab electrodes such that the first and second tab electrodes are secured in electrical communication.
Abstract:
A system includes a battery cell having an internal heat fin and a first electrically insulating layer disposed over at least a portion of a single side of the internal heat fin. The battery cell includes an electrochemical stack disposed above the first insulating layer and the internal heat fin in a stack. The battery cell also includes a pouch material film configured to hermetically seal with one side of the internal heat fin or the first insulating layer about the electrochemical stack such that the internal heat fin forms an outer boundary of the battery cell. The pouch material film includes a metallic foil layer disposed between a second electrically insulating layer and a third electrically insulating layer.
Abstract:
A battery module includes active material disposed in layers to form a generally planar electrochemical cell with an upper surface, a lower surface, and side surfaces. The battery also includes electrodes extending out of the electrochemical cell, and a frame disposed about the active material such that edges of the frame surround the side surfaces of the active material and the electrodes extend beyond the frame. The battery further includes an upper layer of pouch material disposed over the upper surface of the active material and an upper surface of the frame, and a lower layer of pouch material disposed over the lower surface of the active material and a lower surface of the frame. The upper layer of pouch material and the lower layer of pouch material function to provide a seal that seals the active material within the frame.
Abstract:
A battery module including a first positive terminal, a second positive terminal, a ground terminal, a power conversion circuit, and a power assembly. The power assembly includes a plurality of battery cells coupled in series and disposed in a stacked orientation relative to each other and configured to output a first voltage between the first positive terminal and the ground terminal. The power conversion circuit is electrically coupled to the power assembly and configured to receive the first voltage as an input and to output a second voltage different from the first voltage. The second positive terminal is electrically coupled to the power conversion circuit to receive the second voltage from the power conversion circuit.
Abstract:
A battery cell assembly for use in a battery module including a battery cell that includes a positive electrode and a negative electrode and a rigid frame coupled to the battery cell. The rigid frame includes a first frame connector and a second frame connector. The frame is configured to facilitate electrical coupling of the positive electrode of the battery cell with the first frame connector, and to facilitate electrical coupling of the negative electrode of the battery cell with the second frame connector. The first and second frame connectors are configured to interface with frame connectors of other battery cell assemblies to facilitate physical and electrical connection of a plurality of battery cell assemblies disposed in a stacked orientation relative to each other.
Abstract:
In an embodiment, a system includes a battery module, a battery cell assembly that is a component of the battery module, and a battery cell of the battery cell assembly, wherein the battery cell is configured to generate heat during operation. The battery cell assembly also includes a phase change material (PCM) disposed along a thermal pathway within the battery cell assembly that transfers the heat generated by the battery cell away from the battery cell during operation. The PCM is configured to conduct a first portion of the heat generated by the battery cell during operation. Further, the PCM is configured to absorb a second portion of the heat generated by the battery cell to affect a phase change within at least a portion of the PCM.
Abstract:
A remanufactured battery module includes a power assembly having a stack of battery cell assemblies. Each battery cell assembly includes a plurality of layers including a battery cell and a frame supporting the battery cell within the power assembly. The plurality of layers of at least one battery cell assembly includes an internal heat fin having first and second side portions extending beyond respective side edges of the battery cell and the frame. The remanufactured battery module also includes a side assembly in physical contact with the first side portion of the internal heat fin to enable the side assembly to act as a heat sink with respect to the first side portion of the internal heat fin. A layer of the plurality of layers of at least one battery cell assembly is new, and at least a portion of the side assembly is used.
Abstract:
A system includes a battery cell having an internal heat fin and a first electrically insulating layer disposed over at least a portion of a single side of the internal heat fin. The battery cell includes an electrochemical stack disposed above the first insulating layer and the internal heat fin in a stack. The battery cell also includes a pouch material film configured to hermetically seal with one side of the internal heat fin or the first insulating layer about the electrochemical stack such that the internal heat fin forms an outer boundary of the battery cell. The pouch material film includes a metallic foil layer disposed between a second electrically insulating layer and a third electrically insulating layer.
Abstract:
A battery module includes a power assembly including a first battery cell and a second battery cell in a stacked orientation relative to each other, wherein the first battery cell comprises a first tab electrode extending therefrom, and wherein the second battery cell comprises a second tab electrode extending therefrom. The battery module also includes an interconnect assembly configured to facilitate electrically coupling the first tab electrode with the second tab electrode with the first and second battery cells in the stacked orientation. The interconnect assembly includes a coupling structure about which the first and second tab electrodes at least partially conform. In addition, the interconnect assembly includes a clamp disposed about the coupling structure and the first and second tab electrodes such that the first and second tab electrodes are secured in electrical communication.
Abstract:
A system includes a battery module having a heat sink outer wall feature and a plurality of battery cells. The battery module also includes a plurality of internal heat fins interleaved with the plurality of battery cells, wherein each of the plurality of internal heat fins is in thermal communication with at least one of the plurality of battery cells and in thermal communication with the heat sink outer wall feature. The battery module further includes a plurality of phase change material (PCM) layers interleaved with the plurality of battery cells, wherein each of the plurality of PCM layers is configured to be in thermal communication with at least one of the plurality of battery cells and in thermal communication with at least one of the plurality of internal heat fins.