Abstract:
A fuel supply and combustion chamber system for a portable power tool, such as, for example, a fastener-driving tool, wherein the fuel supply and combustion chamber system can utilize liquid or gaseous fuels. The fuel supply and combustion chamber system can comprise multiple combustion chambers for achieving predetermined combustion and power output characteristics. In addition, the fuel supply and combustion chamber system can utilize portioning valve structures for providing predetermined amounts of either a gaseous or liquid fuel into the portable power tool combustion chamber.
Abstract:
A combustion chamber of a positive-displacement spark-ignited internal combustion engine is divided into a main combustion chamber and a pre-combustion chamber having proximal and distal ends. The proximal end is connected to the main combustion chamber and a spark-ignition device is located at the distal end. Within the pre-combustion chamber, a plurality of passageways extend between its proximal and distal ends so that a flame front ignited by the ignition device at the distal end of the pre-combustion chamber propagates along the plurality of passageways as separate flame fronts toward the proximal end of the pre-combustion chamber. A displacer separates a premixing chamber from the pre-combustion and main combustion chambers. The displacer is relatively moveable for transferring the charge of fuel and air from the premixing chamber into the pre-combustion main combustion chambers.
Abstract:
A purging and recharging system improves the repeating of detonations from a detonation device 10 having a detonation chamber 20 separated from an ignition chamber 25 by a detonation plate 22 having an opening 23 through which a flame jet can pass from ignition chamber 25 to detonation chamber 20. A differential piston 30 driven by a detonation in a differential cylinder 31, 32 around detonation chamber 20 affords a fluid passageway between differential piston 30 and detonation chamber 20. On a power stroke, differential piston 30 compresses recharging air and draws in cooling and exhaust purging air to surround detonation chamber 20. On a return stroke, differential piston 30 forces cooling and purging air into detonation chamber 20 and then admits compressed recharging air into detonation chamber 20. A check valve 55 on the detonation side of the opening in detonation plate 22 admits fluid and flame from ignition chamber 25 into detonation chamber 20 during ignition and blocks backflow of fluid or flame from detonation chamber 20 into ignition chamber 25 during detonation.
Abstract:
A compression engine for use within a gas fastener-driving tool for driving fasteners into workpieces comprises a first combustion chamber operatively associated with a working piston of the fastener-driving tool so as to move the working piston through its power stroke and thereby drive a fastener into a workpiece, and at least one power assist mechanism operatively associated with the working piston such that the power assist mechanism will effectively act upon the working piston in order to move the working piston from its disposition at the end of its power stroke back to its initial position and through a compression stroke at which time another fastener-driving operative cycle can be commenced. Preferably, the power assist mechanism comprises at least one other combustion chamber, or a rack and pinion mechanism. Ignition of the air/fuel mixtures within the various combustion chambers is controlled by an ignition module and the optimal control of various intake and exhaust valves within the various combustion chambers.
Abstract:
A new and improved combustion-powered fastener-driving tool utilizes a new and improved single component in-take/exhaust valve member which integrally defines both the intake and exhaust valves thereon. The intake/exhaust valve member is axially movable within the combustion chamber, and operatively cooperates with wall structure of the combustion chamber. When the intake/exhaust valve member is disposed, for example, at a first upper position, both the intake and exhaust ports defined within the wall structure of the combustion chamber are closed so as to permit the ignition and combustion phases of the tool-firing cycle to proceed, whereas, conversely, when the intake/exhaust valve member is disposed, for example, at a second lower position, both the intake and exhaust ports within the combustion chamber are open so as to permit incoming air to scavenge combustion exhaust products and to subsequently mix with injected fuel in preparation for the commencement of another tool-firing cycle.
Abstract:
A new and improved combustion-powered fastener-driving tool utilizes a new and improved single component in-take/exhaust valve member which integrally defines both the intake and exhaust valves thereon. The intake/exhaust valve member is axially movable within the combustion chamber, and operatively cooperates with wall structure of the combustion chamber. When the intake/exhaust valve member is disposed, for example, at a first upper position, both the intake and exhaust ports defined within the wall structure of the combustion chamber are closed so as to permit the ignition and combustion phases of the tool-firing cycle to proceed, whereas, conversely, when the intake/exhaust valve member is disposed, for example, at a second lower position, both the intake and exhaust ports within the combustion chamber are open so as to permit incoming air to scavenge combustion exhaust products and to subsequently mix with injected fuel in preparation for the commencement of another tool-firing cycle.
Abstract:
The intermittent linear motor of this invention incorporates features which enhance the exhaust scavenging and cooling processes, as well as simplifying overall construction including a compression plenum below the piston where air displaced during a power stroke by the piston is immediately transferred through the combustion chamber allowing said compressed air to immediately begin scavenging exhaust gases as the piston is returned further displacing spent gases from the motor.
Abstract:
Compression waves are formed by detonating a mixture of fuel and air confined within a chamber that has a constricted output opening. The mixture is ignited instantaneously throughout a peripheral region of the chamber opposite the output opening, and this region is shaped relative to the dimensions of the chamber and the output opening so that the burning of the mixture accelerates toward the output opening and inward from the peripheral region. This dynamically compresses and detonates the mixture to form a high pressure compression wave and direct it out of the output opening. The instantaneous ignition can be by plasma jets or flames injected into the ignition region from an ignition chamber adjacent to the detonation chamber. The device can directly transform the chemical energy of a fuel into a high pressure thrust directed against a relatively movable resistance to serve as a prime mover suitable for many tasks. It can drive a piston, plunger, or rotor vane; provide propulsive thrust; or direct a compression wave through open air.
Abstract:
An exhaust check valve and piston return system wherein a main exhaust valve is opened as a result of combustion products from the combustion chamber being routed through a signal line. In addition, as a result of the opening of the main exhaust valve, an exhaust check valve, incorporated within a side wall portion of the cylinder housing at a location disposed downstream of the main exhaust valve, as considered in the direction of flow of the exhaust gases out from the combustion chamber, is forced to its open position so as to permit the combustion gases to be exhausted from the combustion chamber, thereby permitting the piston to move upwardly so as to complete its return stroke.
Abstract:
A new and improved combustion chamber and cooling system for a fastener-driving tool wherein a new and improved tangentially oriented, vortex induced fuel-injection system is operatively associated with the tool's combustion chamber. In addition, a new and improved trigger-controlled valve actuating system, such as, for example, a switch-operated, solenoid-actuated valve-controlling system, is incorporated within the tool so as to ensure the rapid operation of the intake and outlet valve structures. Still further, a sealed, liquid evaporative or liquid recirculating cooling system is integrally incorporated within the tool housing.