Abstract:
An image processing apparatus according to an embodiment includes a processing circuitry. The processing circuitry is configured to obtain images in a time series including images of a blood vessel of a subject and correlation information indicating a correlational relationship between physical indices of the blood vessel and function indices of the blood vessel related to vascular hemodynamics, calculate blood vessel morphology indices in a time series indicating morphology of the blood vessel of the subject, on a basis of the images in the time series, and identify a function index of the blood vessel of the subject, by using a physical index of the blood vessel of the subject obtained from the blood vessel morphology indices, on a basis of the correlation information.
Abstract:
According to one embodiment, a heat transport apparatus includes an evaporator, a cooling unit, a channel structure, and a heating mechanism. The evaporator vaporizes a refrigerant by heat generated by a heat-generating element. The cooling unit is provided above the evaporator and cools and condenses the refrigerant vaporized in the evaporator. The channel structure constitutes a channel through which the refrigerant circulates between the evaporator and the cooling unit. The heating mechanism heats the cooling unit and suppresses solidification of the refrigerant at the cooling unit.
Abstract:
An electrochemical reaction device, comprises: an anode to oxidize a first substance; a first flow path facing on the anode and through which a liquid containing the first substance flows; a cathode to reduce a second substance; a second flow path facing on the cathode and through which a gas containing the second substance flows; a porous separator provided between the anode and the cathode; and a power supply connected to the anode and the cathode. A thickness of the porous separator is 1 μm or more and 500 μm or less. An average fine pore size of the porous separator is larger than 0.008 μm and smaller than 0.45 μm. A porosity of the porous separator is higher than 0.5.
Abstract:
According to one embodiment, a heat exchanger includes a pipe through which a fluid flows, and a supply device that supplies the fluid to the pipe. The pipe includes a flexible part deformed by flowing of the fluid, and a constricted part located at a downstream side of the flexible part along a flow direction of the fluid.
Abstract:
According to one embodiment, a heat dissipation structure includes a heat dissipating unit and a heat accumulating unit. The heat dissipating unit includes at least one extending part which extends in a first direction, and is configured to be thermally connected to an apparatus which is configured to produce heat. The heat accumulating unit includes an accommodating unit which is configured to be thermally connected to the extending part, a heat storage material sealed inside the accommodating unit.