Abstract:
In one aspect sintered cemented carbide articles are described herein which, in some embodiments, exhibit enhanced resistance to wear and thermal fatigue. Further, sintered cemented carbide articles described herein can tolerate variations in carbon content without formation of undesirable phases, including eta phase and/or free graphite (C-type porosity). Such tolerance can facilitate manufacturing and use of carbide grades where carbon content is not strictly controlled. A sintered cemented carbide body described herein comprises a hard particle phase including tungsten carbide and a metallic binder phase comprising at least one of cobalt, nickel and iron and one or more alloying additives, wherein the sintered cemented carbide has a magnetic saturation (MS) ranging from 0% to 73% and no eta phase.
Abstract:
In one aspect sintered cemented carbide articles are described herein which, in some embodiments, exhibit enhanced resistance to wear and thermal fatigue. Further, sintered cemented carbide articles described herein can tolerate variations in carbon content without formation of undesirable phases, including eta phase and/or free graphite (C-type porosity). Such tolerance can facilitate manufacturing and use of carbide grades where carbon content is not strictly controlled. A sintered cemented carbide body described herein comprises a hard particle phase including tungsten carbide and a metallic binder phase comprising at least one of cobalt, nickel and iron and one or more alloying additives, wherein the sintered cemented carbide has a magnetic saturation (MS) ranging from 0% to 73% and no eta phase.
Abstract:
In one aspect, methods of purifying WC compositions are described herein. A method of purifying a WC composition comprises contacting the WC composition with an electrolyte solution comprising a cationic metal oxidant and oxidizing one or more metal impurities of the WC composition with the cationic metal oxidant to solubilize the one or more metal impurities in the electrolyte solution.
Abstract:
In one aspect sintered cemented carbide articles are described herein which, in some embodiments, exhibit enhanced resistance to wear and thermal fatigue. Further, sintered cemented carbide articles described herein can tolerate variations in carbon content without formation of undesirable phases, including eta phase and/or free graphite (C-type porosity). Such tolerance can facilitate manufacturing and use of carbide grades where carbon content is not strictly controlled. A sintered cemented carbide body described herein comprises a hard particle phase including tungsten carbide and a metallic binder phase comprising at least one of cobalt, nickel and iron and one or more alloying additives, wherein the sintered cemented carbide has a magnetic saturation (MS) ranging from 0% to 73% and no eta phase.
Abstract:
In one aspect sintered cemented carbide articles are described herein which, in some embodiments, exhibit enhanced resistance to wear and thermal fatigue. Further, sintered cemented carbide articles described herein can tolerate variations in carbon content without formation of undesirable phases, including eta phase and/or free graphite (C-type porosity).Such tolerance can facilitate manufacturing and use of carbide grades where carbon content is not strictly controlled. A sintered cemented carbide body described herein comprises a hard particle phase including tungsten carbide and a metallic binder phase comprising at least one of cobalt, nickel and iron and one or more alloying additives, wherein the sintered cemented carbide has a magnetic saturation (MS) ranging from 0% to 73% and no eta phase.