Abstract:
In several embodiments, methods, systems, and computer program products for processing digital images captured by a mobile device are disclosed. The techniques include detecting medical documents and/or documents relevant to an insurance claim by defining candidate edge points based on the captured image data and defining four sides of a tetragon based on at least some of the candidate edge points. In the case of an insurance claim process, the techniques also include determining whether the document is relevant to an insurance claim; and in response to determining the document is relevant to the insurance claim, submitting the image data, information extracted from the image data, or both to a remote server for claims processing. The image capture and processing techniques further facilitate processing of medical documents and/or insurance claims with a plurality of additional features that may be used individually or in combination in various embodiments.
Abstract:
Computerized techniques for improved binarization and extraction of information from digital image data are disclosed in accordance with various embodiments. The inventive concepts include: rendering, using a processor of the mobile device, a digital image using a plurality of binarization thresholds to generate a plurality of range-binarized digital images, wherein each rendering of the digital image is generated using a different combination of the plurality of binarization thresholds; identifying, using the processor of the mobile device, one or more range connected components within the plurality of range-binarized digital images; and identifying, using the processor of the mobile device, a plurality of text regions within the digital image based on some or all of the range connected components. Corresponding systems and computer program products are also disclosed.
Abstract:
Techniques for improved binarization and extraction of information from digital image data are disclosed in accordance with various embodiments. The inventive concepts include independently binarizing portions of the image data on the basis of individual features, e.g. per connected component, and using multiple different binarization thresholds to obtain the best possible binarization result for each portion of the image data independently binarized. Determining the quality of each binarization result may be based on attempted recognition and/or extraction of information therefrom. Independently binarized portions may be assembled into a contiguous result. In one embodiment, a method includes: identifying a region of interest within a digital image; generating a plurality of binarized images based on the region of interest using different binarization thresholds; and extracting data from some or all of the plurality of binarized images. Corresponding systems and computer program products are also disclosed.
Abstract:
A method includes: displaying a digital image on a first portion of a display of a mobile device; receiving user feedback via the display of the mobile device; analyzing the user feedback to determine a meaning of the user feedback; based on the determined meaning of the user feedback, analyzing a portion of the digital image corresponding to either the point of interest or the region of interest to detect one or more connected components depicted within the portion of the digital image; classifying each detected connected component depicted within the portion of the digital image; estimating an identity of each detected connected component based on the classification of the detected connected component; and one or more of: displaying the identity of each detected connected component on a second portion of the display of the mobile device; and providing the identity of each detected connected component to a workflow.
Abstract:
Computer program products for discriminating hand and machine print from each other, and from signatures, are disclosed and include program code readable and/or executable by a processor to: receive an image, determine a color depth of the image; reducing the color depth of non-bi-tonal images to generate a bi-tonal representation of the image; identify a set of one or more graphical line candidates in either the bi-tonal image or the bi-tonal representation, the graphical line candidates including true graphical lines and/or false positives; discriminate any of the true graphical lines from any of the false positives; remove the true graphical lines from the bi-tonal image or the bi-tonal representation without removing the false positives to generate a component map comprising connected components and excluding graphical lines; identify one or more of the connected components in the component map; and output and/or display and indicator of each of the connected components.
Abstract:
In various embodiments, methods, systems, and computer program products for processing digital images captured by a mobile device are disclosed. Myriad features enable and/or facilitate processing of such digital images using a mobile device that would otherwise be technically impossible or impractical, and furthermore address unique challenges presented by images captured using a camera rather than a traditional flat-bed scanner, paper-feed scanner or multifunction peripheral.
Abstract:
In various embodiments, methods, systems, and computer program products for processing digital images captured by a mobile device are disclosed. Myriad features enable and/or facilitate processing of such digital images using a mobile device that would otherwise be technically impossible or impractical, and furthermore address unique challenges presented by images captured using a camera rather than a traditional flat-bed scanner, paper-feed scanner or multifunction peripheral.
Abstract:
In various embodiments, methods, systems, and computer program products for processing digital images captured by a mobile device are disclosed. Myriad features enable and/or facilitate processing of such digital images using a mobile device that would otherwise be technically impossible or impractical, and furthermore address unique challenges presented by images captured using a camera rather than a traditional flat-bed scanner, paper-feed scanner, or multifunction peripheral.
Abstract:
In one embodiment, a method includes receiving a digital image captured by a mobile device; and using a processor of the mobile device: generating a first representation of the digital image, the first representation being characterized by a reduced resolution; generating a first feature vector based on the first representation; comparing the first feature vector to a plurality of reference feature matrices; and classifying an object depicted in the digital image as a member of a particular object class based at least in part on the comparing.
Abstract:
Techniques for binarization and extraction of information from image data are disclosed. The inventive concepts include independently binarizing portions of the image data on the basis of individual features, e.g. per connected component, and using multiple different binarization thresholds to obtain the best possible binarization result for each portion of the image data. Determining the quality of each binarization result may be based on attempted recognition and/or extraction of information therefrom. Independently binarized portions may be assembled into a contiguous result. In one embodiment, a method includes: identifying a region of interest within a digital image; generating a plurality of binarized images based on the region of interest using different binarization thresholds; and extracting data from some or all of the plurality of binarized images. The extracted data includes connected components that overlap and/or are obscured by unique background. Corresponding systems and computer program products are disclosed.