摘要:
An electronic endoscope system according to the present invention has a video-scope that has an image sensor, and a light source unit that is capable of selectively emitting normal-light and excitation-light. The electronic endoscope system further has a signal processor and a display processor. The signal processor generates normal color image signals, which corresponds to the normal color image, on the basis of the normal image-pixel signals. Similarly, the signal processor generates auto-fluorescent image signals corresponding to the auto-fluorescent image on the basis of the auto-fluorescent image-pixel signals, and generates diagnosis color image signals corresponding to the diagnosis color image on the basis of the normal color image signals and the auto-fluorescent image signals. The display processor processes the normal color image signals, the auto-fluorescent image signals, and the diagnosis color image signals so as simultaneously to display a normal color movie-image, an auto-fluorescent movie-image, and a diagnosis color movie-image.
摘要:
An image data processor comprising an image signal receiver, a histogram generator, a gain calculator, an amplifier, and a signal feeder, is provided. The image signal receiver receives an autofluorescence image signal. The autofluorescence image signal is generated by an imaging device when the imaging device captures an autofluorescence image. The histogram generator generates a histogram of luminance in the autofluorescence image based on the autofluorescence image signal. The gain calculator calculates a gain based on the histogram and a predetermined luminance value. The amplifier amplifies the autofluorescence image signal by the gain. And then the amplifier generates an amplified autofluorescence image signal. The signal feeder outputs the amplified autofluorescence image signal to a monitor. The monitor displays an amplified autofluorescence image.
摘要:
An electronic endoscope system has a video-scope, an illumination apparatus, an imaging device, and an image synthesizing processor. The illumination apparatus illuminates a normal light and an excitation-light from the video-scope onto an object. The normal light is reflected off the object, and the excitation-light causes the object to emit fluorescence. The imaging device on the video-scope captures a normal image that is formed by the reflected normal light and a fluorescent image that is formed by the fluorescence. The image synthesizing processor synthesizes the normal image and the fluorescent image into a synthesized image. A color signal of the synthesized image is the same as a color signal of the normal image. A luminance signal or the synthesized image is obtained by mixing a luminance signal of the normal image and a luminance signal of the fluorescent image in a predetermined proportion.
摘要:
An electronic endoscope system according to the present invention has a video-scope that has an image sensor, and a light source unit that is capable of selectively emitting normal-light and excitation-light. The electronic endoscope system further has a signal processor and a display processor. The signal processor generates normal color image signals, which corresponds to the normal color image, on the basis of the normal image-pixel signals. Similarly, the signal processor generates auto-fluorescent image signals corresponding to the auto-fluorescent image on the basis of the auto-fluorescent image-pixel signals, and generates diagnosis color image signals corresponding to the diagnosis color image on the basis of the normal color image signals and the auto-fluorescent image signals. The display processor processes the normal color image signals, the auto-fluorescent image signals, and the diagnosis color image signals so as simultaneously to display a normal color movie-image, an auto-fluorescent movie-image, and a diagnosis color movie-image.
摘要:
An endoscope processor comprising an image signal receiver, a calculator, an amplifier, and a noise reduction unit, is provided. The image signal receiver receives a raw image signal. The image signal is generated by an imaging device when the imaging device captures an optical image of an object. The calculator calculates a first gain. The first gain is used for amplifying the raw image signal. The amplifier amplifies the raw image signal based on the first gain, and then the amplified image signal is generated. The noise reduction unit reduces noise included in the amplified image signal according to the first gain, and then the noise-reduced signal is generated.
摘要:
An image data processor comprising an image signal receiver, a histogram generator, a gain calculator, an amplifier, and a signal feeder, is provided. The image signal receiver receives an autofluorescence image signal. The autofluorescence image signal is generated by an imaging device when the imaging device captures an autofluorescence image. The histogram generator generates a histogram of luminance in the autofluorescence image based on the autofluorescence image signal. The gain calculator calculates a gain based on the histogram and a predetermined luminance value. The amplifier amplifies the autofluorescence image signal by the gain. And then the amplifier generates an amplified autofluorescence image signal. The signal feeder outputs the amplified autofluorescence image signal to a monitor. The monitor displays an amplified autofluorescence image.
摘要:
An image data processor comprising an image signal receiver, a histogram generator, a gain calculator, an amplifier, and a signal feeder, is provided. The image signal receiver receives an autofluorescence image signal. The autofluorescence image signal is generated by an imaging device when the imaging device captures an autofluorescence image. The histogram generator generates a histogram of luminance in the autofluorescence image based on the autofluorescence image signal. The gain calculator calculates a gain based on the histogram and a predetermined luminance value. The amplifier amplifies the autofluorescence image signal by the gain. And then the amplifier generates an amplified autofluorescence image signal. The signal feeder outputs the amplified autofluorescence image signal to a monitor. The monitor displays an amplified autofluorescence image.
摘要:
A scanning endoscope processor, comprising a photoelectric converter and a controller, is provided. The scanning endoscope processor controls a scanning endoscope having first and second transmitters and an actuator. The photoelectric converter receives light transmitted from the second transmitter and generates a pixel signal according to the amount of light received. The second transmitter transmits reflected light and/or fluorescence from a point within an observation area illuminated by the light emitted from a first emission end. The first transmitter emits the light as a beam from the first emission end. The actuator moves the first emission end along a spiral course. The controller adjusts at least one of a first angular velocity and a generation cycle so that the product of the first angular velocity, the generation cycle, and a first distance is within a predetermined range.
摘要:
An endoscope system comprises a light source, a light sensor, a signal processor, a video-signal generator, and a switcher. The light source emits red light including a first wavelength, green light including a second wavelength, and blue light including a third wavelength. The light sensor receives the light of the light source. The signal processor obtains a red signal based on the red light, a green signal based on the green light, and a blue signal based on the blue light. The video-signal generator generates video signal based on the red, green, and blue signals. The switcher switches between a first switching state and a second switching state. The red, green, and blue signals are output to the video-signal generator in the first switching state. The green and blue signals are output to the video-signal generator in the second switching state.
摘要:
An electronic endoscope has a video-scope with an image sensor, a light source that emits illuminating-light to illuminate an object, an image sensor driver, a luminance detector, one rotary shutter, and a brightness adjuster. The luminance detector detects a luminance of an object image on the basis of image-pixel signals read from the image sensor. The rotary shutter has a light-transmitting portion that transmits the illuminating light, and a shield portion that blocks the illuminating light. The brightness adjuster controls the rotary shutter to adjust an irradiation-interval of the illuminating-light in accordance with a charge accumulation interval. The brightness adjuster shifts a rotation-phase of the rotary shutter by changing a rotation-speed on the basis of the detected luminance, so as to maintain a brightness of the object image at a proper brightness.