Abstract:
Embodiments relate to an organic light emitting display device and a method of manufacturing the same. The organic light emitting display device includes a pixel area that includes at least a first sub pixel area. The first sub pixel area includes a color filter, a first overcoat element on the color filter, wherein a portion of the color filter at an edge portion of the first sub pixel area is not covered by the first overcoat element, and an electrode disposed on the pixel area, wherein the electrode is on the portion of the color filter not covered by the first overcoat element.
Abstract:
A display device includes a plurality of signal lines arranged in a display area of a substrate and a pad structure located at a non-active area and connected with the signal lines. The pad structure includes a plurality of metal layers and two or more insulating layers located between the metal layers and having one or more contact hole which makes two metal layers among the metal layers contacted with each other, and the contact holes respectively located in the insulating layers are not overlapped with each other.
Abstract:
An organic light emitting display device includes a plurality of pixels defined on a substrate. Each of the plurality of pixels has a plurality of sub-pixels, and each of the plurality of sub-pixels has a light emitting area and a driving area. Widths in a first direction of the driving areas of the plurality of sub-pixels are identical to each other. A size of a light emitting area of a first sub-pixel of the plurality of sub-pixels is greater than a size of a light emitting area of a second sub-pixel of the plurality of sub-pixels.
Abstract:
An organic light emitting display device includes a plurality of pixels defined on a substrate. Each of the plurality of pixels has a plurality of sub-pixels, and each of the plurality of sub-pixels has a light emitting area and a driving area. Widths in a first direction of the driving areas of the plurality of sub-pixels are identical to each other. A size of a light emitting area of a first sub-pixel of the plurality of sub-pixels is greater than a size of a light emitting area of a second sub-pixel of the plurality of sub-pixels.
Abstract:
A display device includes two or more pixels disposed in a pixel area in which two or more data lines intersect two or more gate lines; a common electrode commonly disposed on the pixels; a first gate high voltage supplied through a first gate voltage line, a portion of the first gate high voltage overlapping the common electrode; a second gate high voltage supplied through a second gate voltage line, a portion of the second gate high voltage overlapping the common electrode; a connecting line structure in contact with the common electrode, and extending from the common electrode in a direction toward a position in which the common electrode does not overlap the first gate voltage line.
Abstract:
Embodiments relate to an organic light emitting display device and a method of manufacturing the same. The organic light emitting display device includes a pixel area that includes at least a first sub pixel area. The first sub pixel area includes a color filter, a first overcoat element on the color filter, wherein a portion of the color filter at an edge portion of the first sub pixel area is not covered by the first overcoat element, and an electrode disposed on the pixel area, wherein the electrode is on the portion of the color filter not covered by the first overcoat element.
Abstract:
The present disclosure relates to a thin film transistor substrate for flat panel display including an organic light emitting diode display. The present disclosure provides a device comprising: a substrate; a scan line extending in a first direction on the substrate; a buffer layer on the scan line; a semiconductor layer extending in a second direction and crossing the scan line on the buffer layer; a gate insulating layer on the semiconductor layer; a gate electrode connected to the scan line, and extending in the first direction and crossing the semiconductor layer on the gate insulating layer; an intermediate insulating layer on the gate electrode; a data line crossing the scan line on the intermediate insulating layer; a source electrode branching from the data line and contacting a first side of the semiconductor layer; and a drain electrode facing the source electrode and contacting a second side of the semiconductor layer.
Abstract:
A display device comprises a display panel having a display area, in which a plurality of pixels and at least one power line for supplying power to the pixels are formed, and a non-display area outside the display area; and a cover disposed over the display panel so as to cover the display area of the display panel. The cover comprises at least one electrically conductive portion coupled to the at least one power line and configured to receive at least one power supply voltage via the non-display area and supply the at least one power supply voltage to the at least one power line in the display area.
Abstract:
Disclosed are a display panel in which all or some portions of an inspection pad and an inspection wire for inspection of a panel are formed in the display panel, and a display device.
Abstract:
A display device including subpixels and at least two scan lines is disclosed. The subpixels are arranged on a substrate, and each subpixel includes an emission area, in which an emission element is disposed to emit light, and a circuit area, in which a circuit for driving the emission element is disposed. The at least two scan lines are positioned in the circuit area. One or more of the at least two scan lines are formed by a metal layer different from a gate metal layer constituting gate electrodes of transistors disposed in the circuit area.