Abstract:
A lens moving apparatus, including a bobbin; a first coil mounted at an outer circumference of the bobbin; a first magnet moving the bobbin in a first direction parallel to an optical axis by interaction with the first coil; a housing supporting the first magnet; an upper elastic member disposed at a top surface of the bobbin and at a top surface of the housing; a lower elastic member disposed at a bottom surface of the bobbin and at a bottom surface of the housing; and first and second winding protrusions disposed with being opposite to each other, the first coil being wound on the first and second winding protrusions.
Abstract:
A lens driving device is provided. The lens driving device can include a housing, a bobbin disposed in the housing, and a first coil disposed on an outer peripheral surface of the bobbin. The bobbin can comprise a flange unit outwardly protruding more than the first coil, and the housing can comprise a mounting unit overlapped with the flange unit of the bobbin, such that a downward movement of the bobbin is limited by the flange unit and the mounting unit.
Abstract:
A lens moving apparatus includes a bobbin on which a first coil is disposed, a first magnet disposed around the bobbin to face the first coil, and a housing, which is disposed to surround at least a portion of the bobbin and has a first magnet mounting seat, which receives the first magnet, wherein the housing is provided with an adhesive inlet, which allows a side portion of the first magnet mounting seat to communicate with an outside surface of the housing.
Abstract:
A lens moving device is provided. The lens moving device includes: a bobbin; a first driving unit coupled to the bobbin; a second driving unit configured to move the first driving unit through an electromagnetic interaction with the first driving unit; a sensing magnet disposed on one side of the bobbin; a location detection sensor configured to sense a location of the sensing magnet; and a correction magnet disposed on an opposite side of the bobbin.According to the present disclosure, static tilt and dynamic tilt of the bobbin, to which a lens module is to be coupled, may be enhanced by a sensing magnet and a correction magnet which establish magnetic force equilibrium with each other.
Abstract:
A camera module according to the embodiment includes a housing; a lens barrel disposed in the housing to receive a lens; and an elastic member connecting the housing to the lens barrel, and comprising a first elastic part and a second elastic part bent from the first elastic part to have a height from a plane perpendicular to an optical axis of the lens, which is different from a height of the first elastic part. Therefore, the camera module may automatically correct a shake and may adjust a focus.
Abstract:
Disclosed is a camera module. The camera module includes a lens barrel disposed in a housing to receive a lens; and a driving unit moving the lens barrel relative to the housing, wherein the driving unit comprises: a first driving unit in the lens barrel; and a second driving unit in the housing, and wherein the lens barrel comprises a central area on which the lens is disposed; and a peripheral area surrounding the central area, in which the first driving unit is disposed in the peripheral area. The camera module includes a lens barrel disposed in a housing to receive a lens; and a plurality of driving units moving the lens barrel relative to the housing, wherein a first direction is defined perpendicularly to an optical axis of the lens, a second direction is defined perpendicularly to the optical axis of the lens and the first direction, and the driving units including coils and moving the lens barrels in the same direction along the first direction or the second direction have coil winding directions corresponding to each other.
Abstract:
A lens moving device is provided. The lens moving device includes: a bobbin; a first driving unit coupled to the bobbin; a second driving unit configured to move the first driving unit through an electromagnetic interaction with the first driving unit; a sensing magnet disposed on one side of the bobbin; a location detection sensor configured to sense a location of the sensing magnet; and a correction magnet disposed on an opposite side of the bobbin.According to the present disclosure, static tilt and dynamic tilt of the bobbin, to which a lens module is to be coupled, may be enhanced by a sensing magnet and a correction magnet which establish magnetic force equilibrium with each other.
Abstract:
A lens moving apparatus including a bobbin, a first coil mounted at an outer circumference of the bobbin, a first magnet moving the bobbin in a first direction parallel to an optical axis by interaction with the first coil, a housing supporting the first magnet, an upper elastic member disposed at a top surface of the bobbin and at a top surface of the housing, a lower elastic member disposed at a bottom surface of bobbin and at a bottom surface of the housing, and first and second winding protrusions disposed with being opposite to each other, the first coil being wound on the first and second winding protrusions.
Abstract:
A lens actuating unit is provided. The lens actuating unit includes: a bobbin configured to accommodate a lens module at an inner side of the bobbin; a first coil unit disposed at the bobbin; a housing disposed at an outer side of the bobbin; and a magnet unit configured to move the first coil unit through electromagnetic interaction with the first coil unit, wherein the housing includes a hole formed by being recessed from an inner side to an outer side to accommodate the magnet unit.
Abstract:
A lens actuating unit is provided. The lens actuating unit includes: a bobbin configured to accommodate a lens module at an inner side of the bobbin; a first coil unit disposed at the bobbin; a housing disposed at an outer side of the bobbin; and a magnet unit configured to move the first coil unit through electromagnetic interaction with the first coil unit, wherein the housing includes a hole formed by being recessed from an inner side to an outer side to accommodate the magnet unit.