Abstract:
A method of forming a flexible carbon composite self-lubricating seal includes compressing a carbon composite mixture into a mold forming a flexible carbon composite self-lubricating annular seal.
Abstract:
An article comprises a substrate, a coating disposed on a surface of the substrate. The coating comprises a carbon composite dispersed in one or more of the following: a polymer matrix; a metallic matrix; or a ceramic matrix. The carbon composite comprises carbon and a binder containing one or more of the following: SiO2; Si; B; B2O3; a filler metal; or an alloy of the filler metal.
Abstract:
A reinforced composite comprises: a reinforcement material comprising one or more of the following: a carbon fiber based reinforcing material; a fiberglass based reinforcing material; a metal based reinforcing material; or a ceramic based reinforcing material; and a carbon composite; wherein the carbon composite comprises carbon and a binder containing one or more of the following: SiO2; Si; B; B2O3; a metal; or an alloy of the metal; and wherein the metal is one or more of the following: aluminum; copper; titanium; nickel; tungsten; chromium; iron; manganese; zirconium; hafnium; vanadium; niobium; molybdenum; tin; bismuth; antimony; lead; cadmium; or selenium.
Abstract:
A metal composite comprises: a matrix comprising periodic metal springs; and a filler material comprising one or more of the following: a carbon composite; a polymer; a metal; graphite; cotton; asbestos; or glass fiber; wherein the filler material is bounded to the matrix via one or more of the following: a mechanical interlocking; a chemical bond; a solid solution; or an active layer disposed between the periodic metal springs and the filler material.
Abstract:
A seal arrangement includes a body having at least two walls defining a cavity, the walls are engagable with at least one structure through expansion of the body, and graphite is sealingly engaged with the body and the structure and resiliently compressively maintained within the cavity by the at least one structure.
Abstract:
A packoff assembly comprises: a tubing connectable mandrel; and at least one packoff element disposed on the mandrel; the packoff element comprising an annular seal comprising a carbon composite and having an inner surface and an opposing outer surface; the inner surface being in contact with a surface of the mandrel; a wear-resistant member at least partially encapsulating the seal; an annular guide member disposed on the mandrel; and a retainer member disposed between the guide member and the mandrel for securing the guide member to a predetermined position on the mandrel.
Abstract:
A packoff assembly comprises: a tubing connectable mandrel; and at least one packoff element disposed on the mandrel; the packoff element comprising an annular seal comprising a carbon composite and having an inner surface and an opposing outer surface; the inner surface being in contact with a surface of the mandrel; a wear-resistant member at least partially encapsulating the seal; an annular guide member disposed on the mandrel; and a retainer member disposed between the guide member and the mandrel for securing the guide member to a predetermined position on the mandrel.
Abstract:
An article comprises a substrate; a coating comprising a carbon composite; and a binding layer disposed between the substrate and the coating. The carbon composite comprises carbon and a binder containing one or more of the following: SiO2; Si; B; B2O3; a metal; or an alloy of the metal; and the metal comprises one or more of the following: aluminum; copper; titanium; nickel; tungsten; chromium; iron; manganese; zirconium; hafnium; vanadium; niobium; molybdenum; tin; bismuth; antimony; lead; cadmium; or selenium.
Abstract:
Articles comprising carbon composites are disclosed. The carbon composites contain carbon microstructures having interstitial spaces among the carbon microstructures; and a binder disposed in at least some of the interstitial spaces; wherein the carbon microstructures comprise unfilled voids within the carbon microstructures. Alternatively, the carbon composites contain: at least two carbon microstructures; and a binding phase disposed between the at least two carbon microstructures; wherein the binding phase comprises a binder comprising one or more of the following: SiO2; Si; B; B2O3; a metal; or an alloy of the metal; and wherein the metal is at least one of aluminum; copper; titanium; nickel; tungsten; chromium; iron; manganese; zirconium; hafnium; vanadium; niobium; molybdenum; tin; bismuth; antimony; lead; cadmium; or selenium.