Abstract:
Embodiments generally disclosed herein include methods and systems for calculating incremental network costs between logical city pairs in a network (each city pair being in communication across the network via one or more physical links). For example, the method includes a cost analyzer that, for each physical link in the network, determines a steady state capacity allocation associated with each city pair in the network and, in the same vein, determines a restoration capacity allocation associated with each city pair in the network. The cost analyzer is capable of calculating an incremental cost per unit of traffic for a given city pair based on: i) the steady state capacity allocation and a restoration capacity allocation associated with a given city pair, as compared to, ii) the aggregate steady state capacity allocations and restoration capacity allocations associated with each city pair in the network.
Abstract:
Embodiments generally disclosed herein include methods and systems for calculating incremental network costs between logical city pairs in a network (each city pair being in communication across the network via one or more physical links). For example, the method includes a cost analyzer that, for each physical link in the network, determines a steady state capacity allocation associated with each city pair in the network and, in the same vein, determines a restoration capacity allocation associated with each city pair in the network. The cost analyzer is capable of calculating an incremental cost per unit of traffic for a given city pair based on: i) the steady state capacity allocation and a restoration capacity allocation associated with a given city pair, as compared to, ii) the aggregate steady state capacity allocations and restoration capacity allocations associated with each city pair in the network.
Abstract:
Embodiments generally disclosed herein include methods and systems for calculating incremental network costs between logical city pairs in a network (each city pair being in communication across the network via one or more physical links). For example, the method includes a cost analyzer that, for each physical link in the network, determines a steady state capacity allocation associated with each city pair in the network and, in the same vein, determines a restoration capacity allocation associated with each city pair in the network. The cost analyzer is capable of calculating an incremental cost per unit of traffic for a given city pair based on: i) the steady state capacity allocation and a restoration capacity allocation associated with a given city pair, as compared to, ii) the aggregate steady state capacity allocations and restoration capacity allocations associated with each city pair in the network.
Abstract:
Implementations described and claimed herein provide a system and methods for balancing network loads across distinct provider networks. In one implementation, a virtual network representative of at least a first provider network is established having at least one interconnection point where network traffic is exchanged between the first provider network and a second provider network and having at least one provider edge port and at least one potential interconnection point. A measurement of a bandwidth between the at least one provider edge port and the at least one interconnection point is obtained. A measurement of a distance between the at least one provider edge port and a geographically closest of the at least one potential interconnection point or the at least one interconnection point is obtained. A network load indication for the first provider network as a function of the bandwidth measurement and the distance measurement is obtained.
Abstract:
Embodiments generally disclosed herein include methods and systems for calculating incremental network costs between logical city pairs in a network (each city pair being in communication across the network via one or more physical links). For example, the method includes a cost analyzer that, for each physical link in the network, determines a steady state capacity allocation associated with each city pair in the network and, in the same vein, determines a restoration capacity allocation associated with each city pair in the network. The cost analyzer is capable of calculating an incremental cost per unit of traffic for a given city pair based on: i) the steady state capacity allocation and a restoration capacity allocation associated with a given city pair, as compared to, ii) the aggregate steady state capacity allocations and restoration capacity allocations associated with each city pair in the network.
Abstract:
Implementations described and claimed herein provide a system and methods for balancing network loads across distinct provider networks. In one implementation, a virtual network representative of at least a first provider network is established having at least one interconnection point where network traffic is exchanged between the first provider network and a second provider network and having at least one provider edge port and at least one potential interconnection point. A measurement of a bandwidth between the at least one provider edge port and the at least one interconnection point is obtained. A measurement of a distance between the at least one provider edge port and a geographically closest of the at least one potential interconnection point or the at least one interconnection point is obtained. A network load indication for the first provider network as a function of the bandwidth measurement and the distance measurement is obtained.
Abstract:
A system for distributing content includes a content distribution platform (CDP) analysis module configured to determine an optimal combination of one or more CDP components for distributing a specified content item based on at least one content item profile. A method of distributing content includes determining an optimal combination of one or more content distribution platform (CDP) components for distributing a specified content item based on at least one content profile.
Abstract:
Implementations described and claimed herein provide a system and methods for balancing network loads across distinct provider networks. In one implementation, a virtual network representative of at least a first provider network is established having at least one interconnection point where network traffic is exchanged between the first provider network and a second provider network and having at least one provider edge port and at least one potential interconnection point. A measurement of a bandwidth between the at least one provider edge port and the at least one interconnection point is obtained. A measurement of a distance between the at least one provider edge port and a geographically closest of the at least one potential interconnection point or the at least one interconnection point is obtained. A network load indication for the first provider network as a function of the bandwidth measurement and the distance measurement is obtained.