Abstract:
An embodiment takes the form of a process that includes transmitting video frames to a receiving device during a first transmission period of one or more time slots of a half-duplex air interface, and receiving feedback messaging from the receiving device during a feedback period of one or more time slots of the half-duplex air interface. The process further includes suspending, after the first transmission period, transmission of video frames for a suspension period of one or more time slots of the half-duplex air interface, and after the feedback period and after the suspension period, transmitting one or more recovery frames to the receiving device during a recovery period of one or more time slots of the half-duplex air interface. The one or more recovery frames collectively include inter-coded macroblock data and/or intra-coded macroblock data.
Abstract:
Multiple cameras are operatively connected over a shared link to a video server on a video network. The cameras are operated to capture a plurality of video streams. Each video stream has intra-frames and predictive frames that are sequentially generated timewise apart. A number of the video streams that transmit over the shared link on the network is identified. A number of intra-frames that are generated substantially simultaneously in the identified video streams is also identified. The identified intra-frames in the video streams are offset in time to minimize video artifacts from being present in the video streams being transmitted over the shared link.
Abstract:
Analytic and tracking systems and methods are described that use over-the-air identifiers (OTAIs) of mobile devices for tracking, dispatch, identification, etc. In particular, the analytic and tracking systems and methods can include various OTAI sensors that are communicatively coupled to a server and with one another. The OTAI sensors are configured to identify proximate mobile devices concurrent with at least one additional piece of information. The analytic and tracking systems and methods can process identified mobile devices and the additional pieces of information for a plurality of applications.
Abstract:
A method and apparatus for spatial Quality of Service (QoS) in a wireless network include determining a relative or absolute location of target devices receiving or requesting a same media stream; determining a group of the target devices within a given proximity of one another utilizing resources from the same wireless access network; for each target device in the group while the resources remain in the wireless network: determining a target device based on relative spatial distance to other target devices in the group with prioritized reception of the media stream; and granting the determined target device prioritized reception of the media stream.
Abstract:
A method and apparatus for multicasting data streams in a wireless radio communication system are provided. A server assigns a plurality of data streams amongst RF resources. One or more points-of-access of the wireless radio communication system are operable to transmit each RF resource to mobile communication devices. Responsive to a request from a mobile communication device for a selected one of the plurality of data streams, the server identifies the points-of-access that have not been assigned, and hence cannot transmit, the RF resource to which the selected data stream is assigned. An access controller instructs those points-of-access to deny association to the mobile communication device. The server then multicasts the selected data stream to the mobile communication device through one of the remaining points-of-access that can transmit the selected RF resource.