Abstract:
In one form, a reference circuit includes a measurement circuit and a determination circuit. The measurement circuit has an output for providing a ratio of a difference in base-to-emitter voltage (VBE) of a bipolar device at different current densities to a VBE of the bipolar device at a first current density. The determination circuit has an input coupled to the measurement circuit, and an output for providing a digital value of a parameter in response to the ratio. In another form, the reference circuit further includes a voltage generation circuit having an input coupled to the determination circuit, and an output, for modulating an analog voltage using the digital value to provide a reference voltage to the output, wherein the reference voltage is temperature compensated over a temperature range.
Abstract:
In one form, a reference circuit includes a measurement circuit and a determination circuit. The measurement circuit has an output for providing a ratio of a difference in base-to-emitter voltage (VBE) of a bipolar device at different current densities to a VBE of the bipolar device at a first current density. The determination circuit has an input coupled to the measurement circuit, and an output for providing a digital value of a parameter in response to the ratio. In another form, the reference circuit further includes a voltage generation circuit having an input coupled to the determination circuit, and an output, for modulating an analog voltage using the digital value to provide a reference voltage to the output, wherein the reference voltage is temperature compensated over a temperature range.
Abstract:
A method and apparatus is provided for reducing interference in circuits. A management strategy is provided to reduce reference spurs and interference in circuits. The management strategy uses a combination of one or more techniques which reduce the digital current, minimize mutual inductance, utilize field cancellation, prevent leakage current, and/or manage impedance. These techniques may be used alone, or preferably, used on combination with one another.
Abstract:
A method for interfacing with a capacitive touch screen is disclosed. The method includes charging an internal capacitor in the touch screen, which internal capacitor is disposed proximate a fixed location on the touch screen and is capable of changing in response to a touch at that location on the touch screen. After charging, value of the charge on the internal capacitor is determined in a manner to reduce effects of interference.
Abstract:
A method and apparatus is provided for reducing interference in circuits. A management strategy is provided to reduce reference spurs and interference in circuits. The management strategy uses a combination of one or more techniques which reduce the digital current, minimize mutual inductance, utilize field cancellation, prevent leakage current, and/or manage impedance. These techniques may be used alone, or preferably, used on combination with one another.
Abstract:
A method and apparatus is provided for reducing interference in circuits. A management strategy is provided to reduce reference spurs and interference in circuits. The management strategy uses a combination of one or more techniques which reduce the digital current, minimize mutual inductance, utilize field cancellation, prevent leakage current, and/or manage impedance. These techniques may be used alone, or preferably, used on combination with one another.
Abstract:
An image processor system for a charge coupled device (CCD) or CMOS imaging system includes a histogram-based automatic gain control (AGC) circuit which first controls gain by adjusting said CCD system and then for yet a higher gain level makes gain adjustments in said CDSVGA circuit and a digital gain circuit to produce a combined target gain level. A processing system for an imager device includes a camera system for producing an imager signal, a correlated double sample (CDS) circuit for receiving data from an imager, a variable gain amplifier (VGA), an analog-to-digital converter (ADC) coupled to said CDS circuit, a digital gain circuit (DGC) coupled to said ADC, and an automatic gain control (AGC) circuit coupled to said DGC for controlling the CDS circuit and the DGC, as well as shutter timing for shutter gain.
Abstract:
A digital direct access arrangement (DAA) circuitry may be used to terminate the telephone connections at the user's end that provides a communication path for signals to and from the phone lines. Briefly described, the DAA provides a programmable circuit for the DC termination for a variety of international phone standards. The invention may also be utilized with circuitry for transmitting and receiving a signal across a capacitive isolation barrier. More particularly, a DC holding circuit is provided in which a programmable DC current limiting mode is available. In the current limiting mode, power may be dissipated in devices external to a DAA integrated circuit. Moreover, much of the power may be dissipated in external passive devices, such as resistors.
Abstract:
A digital direct access arrangement (DAA) circuitry may be used to terminate the telephone connections at the user's end that provides a communication path for signals to and from the phone lines. Briefly described, the DAA provides a programmable means for the DC termination for a variety of international phone standards. The invention may also be utilized with means for transmitting and receiving a signal across a capacitive isolation barrier. More particularly, a DC holding circuit is provided in which a programmable DC current limiting mode is available. In the current limiting mode, power may be dissipated in devices external to a DAA integrated circuit. Moreover, much of the power may be dissipated in external passive devices, such as resistors.
Abstract:
An image processor system for a charge coupled device (CCD) or CMOS imaging system includes a correlated double sample and variable gain (CDSVGA) circuit for receiving data from a CCD system and an automatic gain control (AGC) circuit which first controls gain by adjusting said CCD system and then for yet a higher gain level makes gain adjustments in said CDSVGA circuit AND a digital gain circuit to produce a combined target gain level. A processing system for an imager device includes a camera system for producing an imager signal, a correlated double sample (CDS) circuit for receiving data from an imager, a variable gain amplifier (VGA), an analog-to-digital converter (ADC) coupled to said CDS circuit, a digital gain circuit (DGC) coupled to said ADC, and an automatic gain control (AGC) circuit coupled to said DGC for controlling the CDS circuit and the DGC. The processing circuitry includes an analog front end and a digital signal processing system for capturing full motion video and outputting a CCIR 601 4:2:2 YCrCb video data output for presentation on a user selected display.