Abstract:
A method for treating a human patient includes emitting ultrasound energy from an ultrasound transducer positioned remotely from target tissue of the patient. The ultrasound transducer is positioned at a desired location relative to the patient and target tissue using location and imaging techniques. The method further includes focusing the ultrasound energy such that one or more focal points are directed to the target tissue of the patient and ablating the target tissue at each focal point. The target tissue is ablated via the focused ultrasound energy without ablating non-target tissue through which the ultrasound energy passes between the ultrasound transducer and the one or more focal points.
Abstract:
A device and method for ablating tissue is disclosed comprising the steps of acquiring an anatomical image of a patient, correlating the image to the patient, guiding an ablating member within the patient while tracking the position of the ablating member in the patient, positioning the ablating member in a desired position to ablate tissue, emitting ablating energy from the ablating member to form an ablated tissue area and removing the ablating member from the patient.
Abstract:
A device and method for ablating tissue is disclosed comprising the steps of acquiring an anatomical image of a patient, correlating the image to the patient, guiding an ablating member within the patient while tracking the position of the ablating member in the patient, positioning the ablating member in a desired position to ablate tissue, emitting ablating energy from the ablating member to form an ablated tissue area and removing the ablating member from the patient.
Abstract:
The disclosure relates to cryoablation probe assemblies including a cryoablation probe and sheath configured to accelerate thawing of the probe from frozen, treated tissue. The sheath can include a plurality of channels configured to direct saline or other biocompatible fluid to the treated tissue. The sheath is configured to slide and advance distally over the cryoablation probe to continually thaw the tissue until the cryoablation probe is freed. Methods of treating atrial fibrillation with a cryoablation probe assembly are also disclosed.
Abstract:
A method for valve replacement or valve repair is disclosed comprising the steps of acquiring an anatomical image of a patient, correlating the image to the patient, guiding a valve replacement delivery member or a valve repair delivery member within the patient while tracking the position of the delivery member in the patient, positioning the valve replacement member or valve repair member in a desired position to place a valve or repair valve and removing the delivery member from the patient. In one aspect, a method and device are provided that involve imaging a native root using an interoperative technique, then introducing a device that is easily visualized in a chosen imaging modality.
Abstract:
A device and method for ablating tissue is disclosed comprising the steps of acquiring an anatomical image of a patient, correlating the image to the patient, guiding an ablating member within the patient while tracking the position of the ablating member in the patient, positioning the ablating member in a desired position to ablate tissue, emitting ablating energy from the ablating member to form an ablated tissue area and removing the ablating member from the patient.
Abstract:
A device and method for ablating tissue is disclosed comprising the steps of acquiring an anatomical image of a patient, correlating the image to the patient, guiding an ablating member within the patient while tracking the position of the ablating member in the patient, positioning the ablating member in a desired position to ablate tissue, emitting ablating energy from the ablating member to form an ablated tissue area and removing the ablating member from the patient.
Abstract:
A method for determining whether a medical device is appropriate for implanting into a cardiovascular conduit of a patient is disclosed comprising imaging a first section of the conduit of the patient into which the medical device is to be implanted during a first expanded state occurring at a first portion of a heart rhythm; reimaging the first section of the conduit of the patient during a first contracted state occurring at a second portion of the heart rhythm; deriving, from the imaging and the reimaging, dimensional characteristics of the first section of the conduit; and determining whether the medical device is appropriate for implantation in the first section of conduit based on the derived dimensional characteristics. The first section of the conduit includes a sizing device providing a selected radial force on the patient.
Abstract:
A device and method for ablating tissue is disclosed comprising the steps of acquiring an anatomical image of a patient, correlating the image to the patient, guiding an ablating member within the patient while tracking the position of the ablating member in the patient, positioning the ablating member in a desired position to ablate tissue, emitting ablating energy from the ablating member to form an ablated tissue area and removing the ablating member from the patient.
Abstract:
A method for valve replacement or valve repair is disclosed comprising the steps of acquiring an anatomical image of a patient, correlating the image to the patient, guiding a valve replacement delivery member or a valve repair delivery member within the patient while tracking the position of the delivery member in the patient, positioning the valve replacement member or valve repair member in a desired position to place a valve or repair valve and removing the delivery member from the patient. In one aspect, a method and device are provided that involve imaging a native root using an interoperative technique, then introducing a device that is easily visualized in a chosen imaging modality.