Abstract:
Various embodiments of a sealed package and a method of forming the package are disclosed. The package can include a housing extending along a housing axis between a first end and a second end, and an electronic device disposed within the housing that includes a device contact. The package can also include an external contact hermetically sealed to the housing at the first end of the housing, and a conductive member electrically connected to the external contact and the device contact such that the conductive member electrically connects the electronic device to the external contact. The conductive member is compressed between the external contact and the device contact.
Abstract:
A device having embedded metallic structures in a glass is provided. The device includes a first wafer, at least one conductive trace, a planarized insulation layer and a second wafer. The first wafer has at least one first wafer via that is filled with conductive material. The at least one conductive trace is formed on the first wafer. The at least one conductive trace is in contact with the at least one first wafer via that is filled with the conductive material. The planarized insulation layer is formed over the first wafer and at least one conductive trace. The planarized insulation layer further has at least one insulation layer via that provides a path to a portion of the at least one conductive trace. The second wafer is bonded to the planarized insulation layer.
Abstract:
A power source for a solid state device includes: a first frame having a first contact portion, a first bonding portion and a first extension portion between the first contact portion and the first bonding portion; a second frame having a second contact portion, a second bonding portion and a second extension portion between the second contact portion and the second bonding portion; and a first pole layer, an electrolyte layer and a second pole layer positioned between the first and second contact portions, wherein a first portion of the electrolyte layer is positioned between the first extension and the first pole and a second portion of the electrolyte layer is positioned between the first extension and the second pole.
Abstract:
A power source for a solid state device includes: a first frame having a first contact portion, a first bonding portion and a first extension portion between the first contact portion and the first bonding portion; a second frame having a second contact portion, a second bonding portion and a second extension portion between the second contact portion and the second bonding portion; and a first pole layer, an electrolyte layer and a second pole layer positioned between the first and second contact portions, wherein a first portion of the electrolyte layer is positioned between the first extension and the first pole and a second portion of the electrolyte layer is positioned between the first extension and the second pole.
Abstract:
A medical device includes a first substrate, a second substrate, a control module, and an energy storage device. The first substrate includes at least one of a first semiconductor material and a first insulating material. The second substrate includes at least one of a second semiconductor material and a second insulating material. The second substrate is bonded to the first substrate such that the first and second substrates define an enclosed cavity between the first and second substrates. The control module is disposed within the enclosed cavity. The control module is configured to at least one of determine a physiological parameter of a patient and deliver electrical stimulation to the patient. The energy storage device is disposed within the cavity and is configured to supply power to the control module.
Abstract:
Various embodiments of a battery assembly include a first housing shell, a second housing shell, an insulator and battery components. The first housing shell has a first perimeter side wall, a first housing bottom, and a first contact area on the first housing bottom. The second housing shell has a second perimeter side wall, a second housing bottom, and a second contact area on the second housing bottom. The second housing shell is disposed in the first housing shell with the second contact area opposing the first contact area. The insulator is interposed between the first housing shell and the second housing shell to effect electrical insulation between the first housing shell and the second housing shell. The battery components include an anode electrode, a cathode electrode, and a separator interposed between the cathode electrode and the anode electrode. The separator contains an electrolyte.
Abstract:
Various embodiments of a battery assembly include a first housing shell, a second housing shell, an insulator and battery components. The first housing shell has a first perimeter side wall, a first housing bottom, and a first contact area on the first housing bottom. The second housing shell has a second perimeter side wall, a second housing bottom, and a second contact area on the second housing bottom. The second housing shell is disposed in the first housing shell with the second contact area opposing the first contact area. The insulator is interposed between the first housing shell and the second housing shell to effect electrical insulation between the first housing shell and the second housing shell. The battery components include an anode electrode, a cathode electrode, and a separator interposed between the cathode electrode and the anode electrode. The separator contains an electrolyte.
Abstract:
A device having embedded metallic structures in a glass is provided. The device includes a first wafer, at least one conductive trace, a planarized insulation layer and a second wafer. The first wafer has at least one first wafer via that is filled with conductive material. The at least one conductive trace is formed on the first wafer. The at least one conductive trace is in contact with the at least one first wafer via that is filled with the conductive material. The planarized insulation layer is formed over the first wafer and at least one conductive trace. The planarized insulation layer further has at least one insulation layer via that provides a path to a portion of the at least one conductive trace. The second wafer is bonded to the planarized insulation layer.
Abstract:
Various embodiments of a sealed package and a method of forming the package are disclosed. The package can include a housing extending along a housing axis between a first end and a second end, and an electronic device disposed within the housing that includes a device contact. The package can also include an external contact hermetically sealed to the housing at the first end of the housing, and a conductive member electrically connected to the external contact and the device contact such that the conductive member electrically connects the electronic device to the external contact. The conductive member is compressed between the external contact and the device contact.
Abstract:
A power source for a solid state device includes: a first frame having a first contact portion, a first bonding portion and a first extension portion between the first contact portion and the first bonding portion; a second frame having a second contact portion, a second bonding portion and a second extension portion between the second contact portion and the second bonding portion; and a first pole layer, an electrolyte layer and a second pole layer positioned between the first and second contact portions, wherein a first portion of the electrolyte layer is positioned between the first extension and the first pole and a second portion of the electrolyte layer is positioned between the first extension and the second pole.