Abstract:
A medical device includes a first substrate, a second substrate, a control module, and an energy storage device. The first substrate includes at least one of a first semiconductor material and a first insulating material. The second substrate includes at least one of a second semiconductor material and a second insulating material. The second substrate is bonded to the first substrate such that the first and second substrates define an enclosed cavity between the first and second substrates. The control module is disposed within the enclosed cavity. The control module is configured to at least one of determine a physiological parameter of a patient and deliver electrical stimulation to the patient. The energy storage device is disposed within the cavity and is configured to supply power to the control module.
Abstract:
A medical device includes a first substrate, a second substrate, a control module, and an energy storage device. The first substrate includes at least one of a first semiconductor material and a first insulating material. The second substrate includes at least one of a second semiconductor material and a second insulating material. The second substrate is bonded to the first substrate such that the first and second substrates define an enclosed cavity between the first and second substrates. The control module is disposed within the enclosed cavity. The control module is configured to at least one of determine a physiological parameter of a patient and deliver electrical stimulation to the patient. The energy storage device is disposed within the cavity and is configured to supply power to the control module.
Abstract:
Magnetic field detectors include a proof mass suspended by deformable arms similar to a three dimensional accelerometer. The magnetic field detectors further include magnetically sensitive material present on the proof mass and/or deformable arms to cause movement of the proof mass and/or deformable arms when in the presence of a magnetic field. This movement is converted to an electrical signal and that electrical signal is compared to a reference to determine if a magnetic field of interest is present. The magnetic field detector may be included within an implantable medical device, and when the magnetic field detector indicates that a magnetic field of an MRI scanner is present, the implantable medical device may switch to an MRI mode of operation. The device may also switch back to a normal mode of operation once the MRI scanner is no longer detected such as after a predefined amount of time.
Abstract:
Magnetic field detectors include a proof mass suspended by deformable arms similar to a three dimensional accelerometer. The magnetic field detectors further include magnetically sensitive material present on the proof mass and/or deformable arms to cause movement of the proof mass and/or deformable arms when in the presence of a magnetic field. This movement is converted to an electrical signal and that electrical signal is compared to a reference to determine if a magnetic field of interest is present. The magnetic field detector may be included within an implantable medical device, and when the magnetic field detector indicates that a magnetic field of an MRI scanner is present, the implantable medical device may switch to an MRI mode of operation. The device may also switch back to a normal mode of operation once the MRI scanner is no longer detected such as after a predefined amount of time.
Abstract:
A medical device includes a first substrate, a second substrate, a control module, and an energy storage device. The first substrate includes at least one of a first semiconductor material and a first insulating material. The second substrate includes at least one of a second semiconductor material and a second insulating material. The second substrate is bonded to the first substrate such that the first and second substrates define an enclosed cavity between the first and second substrates. The control module is disposed within the enclosed cavity. The control module is configured to at least one of determine a physiological parameter of a patient and deliver electrical stimulation to the patient. The energy storage device is disposed within the cavity and is configured to supply power to the control module.