Abstract:
A tool has an outer assembly, which includes a deployment tube, extending around, and moveable with respect to an inner assembly of the tool; the inner assembly includes a single pull wire and a distal member configured to engage an end of an implantable medical device. The deployment tube includes an articulating segment located just proximal to an enlarged distal-most portion, which contains the device and the distal member. Relatively soft and stiff sections of a composite sidewall define the articulating segment and extend alongside one another, such that, when the pull wire is actuated, the composite sidewall causes bending of the segment in two directions. A handle assembly of the tool includes a control member for the pull wire, and may further include a flushing subassembly that has a connector port located at an end of the handle assembly that is opposite a proximal port of the handle.
Abstract:
A kit for implantation of an implantable medical device (IMD) comprises an elongated outer shaft, a tether, and an elongated inner shaft. The IMD comprises a fixation element comprising a looped portion. The outer shaft is sized to traverse a vasculature of the patient and defines a longitudinal lumen and a port in fluid communication with the lumen and located proximal a distal end of the outer shaft. A first portion of the tether is configured to pass through the lumen. A second portion of the tether is configured to exit the lumen through the port and pass through the looped portion of the fixation element of the IMD outside of the outer shaft. A third portion of the tether defines a looped portion of the tether. A portion of the inner shaft is configured to pass through the lumen and to pass through the looped portion of the tether.
Abstract:
A tool has an outer assembly, which includes a deployment tube, extending around, and moveable with respect to an inner assembly of the tool; the inner assembly includes a single pull wire and a distal member configured to engage an end of an implantable medical device. The deployment tube includes an articulating segment located just proximal to an enlarged distal-most portion, which contains the device and the distal member. Relatively soft and stiff sections of a composite sidewall define the articulating segment and extend alongside one another, such that, when the pull wire is actuated, the composite sidewall causes bending of the segment in two directions. A handle assembly of the tool includes a control member for the pull wire, and may further include a flushing subassembly that has a connector port located at an end of the handle assembly that is opposite a proximal port of the handle.
Abstract:
A kit for intravascular implantation of an implantable medical device (IMD) within a patient includes the IMD, an elongated shaft, and a locking mandrel. The IMD comprises a fixation assembly comprising a loop and defines at least one longitudinal lumen and a port in fluid communication with the lumen. The shaft is sized to traverse a vasculature of the patient. The port is sized to receive at least a portion of the loop. The locking mandrel is configured to be positioned within the at least one lumen of the shaft and to pass through the loop within the lumen at the port. A reduced profile portion of the shaft defines a reduced profile with respect to at least one other portion of the shaft. At least a portion of the reduced profile portion is configured to be adjacent to the IMD when the IMD is positioned on the shaft.
Abstract:
An implantable medical device is tethered to a delivery catheter by a length of a tether, which extends through an attachment feature of the device and between a free end thereof and a secured end thereof, wherein the secured end is fixedly coupled to a tubular member of the catheter in proximity to a distal end thereof, and the free end is engaged against an inner surface of a sidewall that extends within the tubular member. The free end of the tether may be engaged against the inner surface by an enlarged distal tip of an elongate wire that extends within a lumen defined by the inner surface of the sidewall. An operator may move the distal tip of the wire out through a distal opening of the lumen, thereby pushing the free end of the tether out from engagement with the surface, to untether the device from the catheter.
Abstract:
An implantable medical device is tethered to a delivery catheter by a length of a tether, which extends through an attachment feature of the device and between a free end thereof and a secured end thereof, wherein the secured end is fixedly coupled to a tubular member of the catheter in proximity to a distal end thereof, and the free end is engaged against an inner surface of a sidewall that extends within the tubular member. The free end of the tether may be engaged against the inner surface by an enlarged distal tip of an elongate wire that extends within a lumen defined by the inner surface of the sidewall. An operator may move the distal tip of the wire out through a distal opening of the lumen, thereby pushing the free end of the tether out from engagement with the surface, to untether the device from the catheter.
Abstract:
In a system for retrieving an implanted device, a flared inner surface of a catheter tubular sidewall may define a distal-most opening of a device receptacle; the opening has a first diameter equal to that of the receptacle, and a second diameter, coincident with a distal-most edge of the tubular sidewall, and at least 5% greater than the receptacle diameter. Alternately, a retrieval tool in sliding engagement within a lumen of a catheter includes a shaft assembly, through which a snare member passes, and which includes a collapsible spring-biased perimeter sidewall; the sidewall defines a capture member passageway approximately coaxial, and in fluid communication with a lumen of the shaft assembly. A distal-most opening of the passageway has a spring-biased diameter that is greater than that of a distal-most opening of a device receptacle of the catheter, and a collapsed diameter that is less than the receptacle distal-most opening diameter.
Abstract:
A system for retrieving an implanted medical device includes an outer tubular member and a contractible super-elastic net, which may be joined to an elongate shaft that extends in sliding engagement within the outer tubular member. When the net expands from a contracted condition the net defines a longitudinally extending tubular cavity. An open end of the cavity is sized to receive passage of a housing of the device therethrough; and the net, with the device housing contained therein, forms an interference fit within an inner diameter of the outer tubular member. But, an outer diameter of the net, in a fully expanded condition, is larger than the inner diameter.
Abstract:
The disclosure describes techniques and systems for delivering an implantable medical device. In one example, an implantable medical device (IMD) delivery system may include an elongated member comprising a first distal end configured to mate with the IMD, a resilient member disposed along at least a portion of the elongated member, a housing configured to accept a first proximal end of the elongated member and a second proximal end of the resilient member, a rotation control mechanism wherein user movement of the rotation control mechanism causes rotation of the elongated member with respect to the housing and a fixation element of the IMD into tissue, and a deflection control mechanism wherein user movement of the deflection control mechanism causes longitudinal displacement of the resilient member along a longitudinal axis of the elongated member and the housing resulting in angular deflection of the first distal end of the elongated member.
Abstract:
A system for retrieving an implanted medical device includes an outer tubular member and a contractible super-elastic net, which may be joined to an elongate shaft that extends in sliding engagement within the outer tubular member. When the net expands from a contracted condition the net defines a longitudinally extending tubular cavity. An open end of the cavity is sized to receive passage of a housing of the device therethrough; and the net, with the device housing contained therein, forms an interference fit within an inner diameter of the outer tubular member. But, an outer diameter of the net, in a fully expanded condition, is larger than the inner diameter.