摘要:
A method is provided for fabricating a thin-film semiconductor substrate by forming a porous semiconductor layer conformally on a reusable semiconductor template and then forming a thin-film semiconductor substrate conformally on the porous semiconductor layer. An inner trench having a depth less than the thickness of the thin-film semiconductor substrate is formed on the thin-film semiconductor substrate. An outer trench providing access to the porous semiconductor layer is formed on the thin-film semiconductor substrate and is positioned between the inner trench and the edge of the thin-film semiconductor substrate. The thin-film semiconductor substrate is then released from the reusable semiconductor template.
摘要:
A method is provided for fabricating a thin-film semiconductor substrate by forming a porous semiconductor layer conformally on a reusable semiconductor template and then forming a thin-film semiconductor substrate conformally on the porous semiconductor layer. An inner trench having a depth less than the thickness of the thin-film semiconductor substrate is formed on the thin-film semiconductor substrate. An outer trench providing access to the porous semiconductor layer is formed on the thin-film semiconductor substrate and is positioned between the inner trench and the edge of the thin-film semiconductor substrate. The thin-film semiconductor substrate is then released from the reusable semiconductor template.
摘要:
The present disclosure presents a partially-transparent (see-through) three-dimensional thin film solar cell (3-D TFSC) substrate. The substrate includes a plurality of unit cells. Each unit cell structure has the shape of a truncated pyramid, and its parameters may be varied to allow a desired portion of sunlight to pass through.
摘要:
A method is provided for fabricating a thin-film semiconductor substrate by forming a porous semiconductor layer conformally on a reusable semiconductor template and then forming a thin-film semiconductor substrate conformally on the porous semiconductor layer. An inner trench having a depth less than the thickness of the thin-film semiconductor substrate is formed on the thin-film semiconductor substrate. An outer trench providing access to the porous semiconductor layer is formed on the thin-film semiconductor substrate and is positioned between the inner trench and the edge of the thin-film semiconductor substrate. The thin-film semiconductor substrate is then released from the reusable semiconductor template.
摘要:
This disclosure presents mobile vacuum carriers that may be used to support thin substrates that would otherwise be too brittle to transport and process. This disclosure relates to the processing of thin semiconductor substrates and has particular applicability to the fields of photovoltaic solar cells, semiconductor microelectronic integrated circuits, micro-electro-mechanical systems (MEMS), optoelectronic devices (such as light-emitting diodes, lasers, photo detectors), data storage devices, etc.
摘要:
A pyramidal three-dimensional thin-film solar cell, comprising a pyramidal three-dimensional thin-film solar cell substrate comprising a plurality of pyramid-shaped unit cells with emitter junction regions and doped base regions, emitter metallization regions and base metallization regions. Optionally, the pyramidal three-dimensional thin-film solar cell may be mounted on a rear mirror for improved light trapping and conversion efficiency.
摘要:
A Schottky contact photovoltaic energy conversion cell. The Schottky contact photovoltaic energy conversion cell comprises a flexible substrate and a first array of a plurality of closely-spaced microscale pillars connected to a first electrical cell contact. The pillars and the contact are formed of (or having a top) layer of a first Schottky metal material with a work function selected for efficiently collecting photogenerated electrons. The Schottky contact photovoltaic energy conversion cell further comprises a second array of a plurality of closely-spaced microscale pillars connected to a second electrical cell contact. The pillars and the contact are formed of (or having a top) layer of a second Schottky metal material with a work function selected for efficiently collecting photogenerated holes. The Schottky contact photovoltaic energy conversion cell further comprises a semiconductor absorber thin-film layer covering the first and second contacts and filling spaces among all the pillars, for creating photogenerated electrons and holes.
摘要:
Solar module structures 210 and 270 and methods for assembling solar module structures. The solar module structures 210 and 270 comprise three-dimensional thin-film solar cells 110 arranged in solar module structures 210 and 270. The three-dimensional thin-film solar cell comprises a three-dimensional thin-film solar cell substrate (124 and 122, respectively) with emitter junction regions 1352 and doped base regions 1360. The three-dimensional thin-film solar cell further includes emitter metallization regions and base metallization regions. The 3-D TFSC substrate comprises a plurality of single-aperture or dual-aperture unit cells. The solar module structures 270 using three-dimensional thin-film solar cells comprising three-dimensional thin-film solar cell substrates with a plurality of dual-aperture unit cells may be used in solar glass applications. The solar module structures 210 using three-dimensional thin-film solar cells comprising three-dimensional thin-film solar cell substrates with a plurality of single-aperture unit cells may be used in building façade and rooftop installation applications as well as for centralized solar electricity generation.
摘要:
A dual collimation deposition apparatus and method are disclosed in which the dual collimation apparatus includes at least a long-throw collimator in combination with one or more physical collimators. A new physical collimator and shield design are also disclosed for improved process uniformity and increased equipment productivity.
摘要:
A self-aligned silicide process that enables different silicide thicknesses for polysilicon gates and source/drain junction regions. Semiconductor body (10) includes a doped well (14) formed in substrate (12). Field insulating region (18) is located above channel stop region (16) in doped well (14). Implanted within doped well (14) are source/drain junctions (34). Source/drain junctions (34) are shallow heavily doped regions. The surfaces of source/drain junctions (34) are silicided. Silicide gate (44) is separated from the surface of doped well (14) by gate insulator layer (20) and contains a silicide layer (40) and a doped polysilicon layer (22). The thickness of silicide layer (40) is not limited by the thickness of the silicided surfaces of source/drain junctions (34) or the amount of silicon consumed over these junctions. Silicon nitride sidewall spacers (32) separate the sidewall edges of silicide gate (44) and the transistor channel region from the source/drain junction silicide layer 41.