Photonic signal frequency up and down-conversion using a photonic band gap structure
    1.
    发明授权
    Photonic signal frequency up and down-conversion using a photonic band gap structure 失效
    使用光子带隙结构的光子信号频率上下转换

    公开(公告)号:US06744552B2

    公开(公告)日:2004-06-01

    申请号:US09742295

    申请日:2000-12-22

    IPC分类号: G02F202

    摘要: A photonic band gap (PBG) device is provided for frequency up and/or down-converting first and second photonic signals incident on the device to produce a down-converted output photonic signal. When the first and second incident photonic signals have respective first and second frequencies &ohgr;3 and &ohgr;2, the down-converted photonic signal has a third frequency &ohgr;1=&ohgr;3−&ohgr;2. When the first incident field has a frequency &ohgr;1, the first up-converted photonic signal has a second frequency &ohgr;2. The second up-converted photonic signal has a third frequency &ohgr;3=&ohgr;1+&ohgr;2. Thus, the PBG device can be used to generate coherent near- and mid-IR signals by frequency down-converting photonic signals from readily available photonic signal sources, or red, blue, and ultraviolet signals by up-converting the same readily available photonic signal sources.

    摘要翻译: 提供了一种光子带隙(PBG)器件,用于对入射到器件上的第一和第二光子信号进行上变频和/或下变频以产生下变频的输出光子信号。 当第一和第二入射光子信号具有相应的第一和第二频率ω3和ω2时,下转换的光子信号具有第三频率ω1 =ω3-ω2。 当第一入射场具有频率ω1时,第一上变频光子信号具有第二频率ω2。 第二次上转换的光子信号具有第三频率ω3=ω1+ω2。 因此,PBG器件可以用于通过从容易获得的光子信号源或红色,蓝色和紫外信号中的光子信号降频转换相同容易获得的光子信号而产生相干近红外信号和中红外信号 来源。

    Zero Index Material Omnireflectors and Waveguides
    2.
    发明申请
    Zero Index Material Omnireflectors and Waveguides 审中-公开
    零索引材料全反射体和波导

    公开(公告)号:US20090310926A1

    公开(公告)日:2009-12-17

    申请号:US12546309

    申请日:2009-08-24

    IPC分类号: G02B6/10 G02F1/00 G02B5/30

    摘要: We have shown that a single layer of a 3D Zero Index Material (ZIM) has omnidirectional reflection properties. In the range between the electric plasma frequency and the magnetic plasma frequency, ZIM reflect radiation for all angles of incidence and polarization with reflectivities of ˜99%. In addition, with increasing angles of incidence, the reflecting band does not shift in frequency but actually widens. The operational bandwidth can be 100% or greater by increasing the separation between the electric and magnetic plasma frequencies. We have also shown that in the spectral region that allows the omnidirectional gap, ZIM can be used as the cladding of hollow waveguides with better performance than traditional hollow waveguides.

    摘要翻译: 我们已经表明,单层3D零索引材料(ZIM)具有全向反射特性。 在等离子体等离子体频率与等离子体等离子体频率之间的范围内,ZIM反射辐射为所有入射角和极化,反射率为〜99%。 另外,随着入射角的增加,反射带的频率不会发生变化,而是实际上变宽。 通过增加电和等离子体频率之间的间隔可以使操作带宽达到100%以上。 我们还表明,在允许全向间隙的光谱区域中,ZIM可以被用作具有比传统空心波导更好性能的空心波导的包层。

    Efficient non-linear phase shifting using a photonic band gap structure
    3.
    发明授权
    Efficient non-linear phase shifting using a photonic band gap structure 失效
    使用光子带隙结构进行有效的非线性相移

    公开(公告)号:US06538794B1

    公开(公告)日:2003-03-25

    申请号:US09672835

    申请日:2000-09-29

    IPC分类号: G02F101

    摘要: A device is provided for generating a photonic signal having a phase different from an input photonic signal that is incident on the device. The input photonic signal has an signal frequency, signal bandwidth, and a signal intensity. The device comprises a plurality of material layers. The material layers are arranged such that the device exhibits a photonic band gap structure. The photonic band gap structure exhibits a transmission band edge that corresponds to the input photonic signal frequency. A second photonic signal is generated at a second photonic frequency preferably close to a second band edge. The interaction of the input photonic signal with the second photonic signal generates a phase shift of order &pgr; for relatively small input intensities.

    摘要翻译: 提供了一种用于产生具有与入射到设备上的输入光子信号不同的相位的光子信号的装置。 输入光子信号具有信号频率,信号带宽和信号强度。 该装置包括多个材料层。 材料层被布置成使得该器件呈现光子带隙结构。 光子带隙结构表现出对应于输入光子信号频率的透射带边缘。 第二光子信号以优选地接近第二带边缘的第二光子频率产生。 输入光子信号与第二光子信号的相互作用产生相对较小输入强度的阶数p i的相移。

    Photonic signal reflectivity and transmissivity control using a photonic band gap structure
    4.
    发明授权
    Photonic signal reflectivity and transmissivity control using a photonic band gap structure 失效
    使用光子带隙结构的光子信号反射率和透射率控制

    公开(公告)号:US06414780B1

    公开(公告)日:2002-07-02

    申请号:US09471036

    申请日:1999-12-23

    IPC分类号: G02F103

    摘要: Non-linear reflectivity and non-linear transmissivity of a first photonic signal incident on a photonic band gap (PBG) structure are controlled by applying a second photonic signal to the PBG structure while the first photonic signal is incident on the PBG structure. The first and second photonic signals have respective frequencies near a low frequency, first order band gap edge and a high frequency, second order band gap edge resonance peak of the PBG structure. The first photonic signal undergoes enhanced non-linear gain near the band gap edges when a predetermined phase difference is imposed between the first and second photonic signals, resulting in dramatic reflectivity and transmissivity changes for a band gap structure of only a few microns in length.

    摘要翻译: 通过在第一光子信号入射到PBG结构上时向PBG结构施加第二光子信号来控制入射在光子带隙(PBG)结构上的第一光子信号的非线性反射率和非线性透射率。 第一和第二光子信号具有接近PBG结构的低频,一阶带隙边缘和高频二阶带隙边缘共振峰值的相应频率。 当在第一和第二光子信号之间施加预定的相位差时,第一光子信号在带隙边缘附近经历增强的非线性增益,导致长度仅为几微米的带隙结构的显着的反射率和透射率变化。

    Zero index material omnireflectors and waveguides
    5.
    发明授权
    Zero index material omnireflectors and waveguides 失效
    零索引材料全反射体和波导

    公开(公告)号:US07580604B2

    公开(公告)日:2009-08-25

    申请号:US11278521

    申请日:2006-04-03

    IPC分类号: G02B6/10 G02F1/00 G02B5/30

    摘要: We have shown that a single layer of a 3D Zero Index Material (ZIM) has omnidirectional reflection properties. In the range between the electric plasma frequency and the magnetic plasma frequency, ZIM reflect radiation for all angles of incidence and polarization with reflectivities of ˜99%. In addition, with increasing angles of incidence, the reflecting band does not shift in frequency but actually widens. The operational bandwidth can be 100% or greater by increasing the separation between the electric and magnetic plasma frequencies. We have also shown that in the spectral region that allows the omnidirectional gap, ZIM can be used as the cladding of hollow waveguides with better performance than traditional hollow waveguides.

    摘要翻译: 我们已经表明,单层3D零索引材料(ZIM)具有全向反射特性。 在等离子体等离子体频率与等离子体等离子体频率之间的范围内,ZIM反射辐射为所有入射角和极化,反射率为〜99%。 另外,随着入射角的增加,反射带的频率不会发生变化,而是实际上变宽。 通过增加电和等离子体频率之间的间隔可以使操作带宽达到100%以上。 我们还表明,在允许全向间隙的光谱区域中,ZIM可以被用作具有比传统空心波导更好性能的空心波导的包层。

    Zero Index Material Omnireflectors and Waveguides
    6.
    发明申请
    Zero Index Material Omnireflectors and Waveguides 失效
    零索引材料全反射体和波导

    公开(公告)号:US20070237478A1

    公开(公告)日:2007-10-11

    申请号:US11278521

    申请日:2006-04-03

    IPC分类号: G02B6/10

    摘要: We have shown that a single layer of a 3D Zero Index Material (ZIM) has omnidirectional reflection properties. In the range between the electric plasma frequency and the magnetic plasma frequency, ZIM reflect radiation for all angles of incidence and polarization with reflectivities of ˜99%. In addition, with increasing angles of incidence, the reflecting band does not shift in frequency but actually widens. The operational bandwidth can be 100% or greater by increasing the separation between the electric and magnetic plasma frequencies. We have also shown that in the spectral region that allows the omnidirectional gap, ZIM can be used as the cladding of hollow waveguides with better performance than traditional hollow waveguides.

    摘要翻译: 我们已经表明,单层3D零索引材料(ZIM)具有全向反射特性。 在等离子体等离子体频率与等离子体等离子体频率之间的范围内,ZIM反射辐射为所有入射角和极化,反射率为〜99%。 另外,随着入射角的增加,反射带的频率不会发生变化,而是实际上变宽。 通过增加电和等离子体频率之间的间隔可以使操作带宽达到100%以上。 我们还表明,在允许全向间隙的光谱区域中,ZIM可以被用作具有比传统空心波导更好性能的空心波导的包层。