Abstract:
Techniques are provided for accessing two memory cells of a memory tile concurrently. A memory tile may include a plurality of self-selecting memory cells addressable using a row decoder and a column decoder. A memory controller may access a first self-selecting memory cell of the memory tile using a first pulse having a first polarity to the first self-selecting memory cell. The memory controller may also access a second self-selecting memory cell of the memory tile concurrently with accessing the first self-selecting memory cell using a second pulse having a second polarity different than the first polarity. The memory controller may determine characteristics of the pulses to mitigate disturbances of unselected self-selecting memory cells of the memory tile.
Abstract:
Semiconductor device packages and associated methods are disclosed herein. In some embodiments, the semiconductor device package includes (1) a first surface and a second surface opposite the first surface; (2) a semiconductor die positioned between the first and second surfaces; and (3) a pattern positioned in a designated area of the first surface. The pattern includes multiple bit areas. Each of the bit areas represents a first bit information or a second bit information. the pattern presents information for operating the semiconductor die. The pattern is configured to be read by a pattern scanner.
Abstract:
Semiconductor device packages and associated methods are disclosed herein. In some embodiments, the semiconductor device package includes (1) a first surface and a second surface opposite the first surface; (2) a semiconductor die positioned between the first and second surfaces; and (3) an indication positioned in a designated area of the first surface. The indication includes a code presenting information for operating the semiconductor die. The code is configured to be read by an indication scanner coupled to a controller.
Abstract:
Three dimension memory arrays and methods of forming the same are provided. An example three dimension memory array can include a stack comprising a plurality of first conductive lines separated from one another by at least an insulation material, and at least one conductive extension arranged to extend substantially perpendicular to the plurality of first conductive lines, such that the at least one conductive extension intersects a portion of at least one of the plurality of first conductive lines. Storage element material is formed around the at least one conductive extension. Cell select material is formed around the at least one conductive extension.
Abstract:
Subject matter disclosed herein relates to techniques to use a memory device. A method includes receiving a memory instruction comprising at least one parameter representative of at least one threshold voltage value and a read command to read at least one cell of the memory device. The method further includes detecting at least one voltage value from the at least one cell. The method further includes comparing the at least one voltage value to the at least one threshold voltage value. The method further includes determining at least one logical value of the at least one cell in response to the comparison of the at least one voltage value to the at least one threshold voltage value.
Abstract:
Three dimension memory arrays and methods of forming the same are provided. An example three dimension memory array can include a stack comprising a plurality of first conductive lines separated from one another by at least an insulation material, and at least one conductive extension arranged to extend substantially perpendicular to the plurality of first conductive lines, such that the at least one conductive extension intersects a portion of at least one of the plurality of first conductive lines. Storage element material is formed around the at least one conductive extension. Cell select material is formed around the at least one conductive extension.
Abstract:
Three dimensional memory array architectures and methods of forming the same are provided. An example memory array can include a stack comprising a plurality of first conductive lines at a number of levels separated from one another by at least an insulation material, and at least one conductive extension arranged to extend substantially perpendicular to the plurality of first conductive lines. Storage element material is formed around the at least one conductive extension. Cell select material is formed around the at least one conductive extension. The at least one conductive extension, storage element material, and cell select material are located between co-planar pairs of the plurality of first conductive lines.
Abstract:
Subject matter disclosed herein relates to techniques to use a memory device. A method includes receiving a memory instruction comprising at least one parameter representative of at least one threshold voltage value and a read command to read at least one cell of the memory device. The method further includes detecting at least one voltage value from the at least one cell. The method further includes comparing the at least one voltage value to the at least one threshold voltage value. The method further includes determining at least one logical value of the at least one cell in response to the comparison of the at least one voltage value to the at least one threshold voltage value.
Abstract:
Techniques are provided for accessing two memory cells of a memory tile concurrently. A memory tile may include a plurality of self-selecting memory cells addressable using a row decoder and a column decoder. A memory controller may access a first self-selecting memory cell of the memory tile using a first pulse having a first polarity to the first self-selecting memory cell. The memory controller may also access a second self-selecting memory cell of the memory tile concurrently with accessing the first self-selecting memory cell using a second pulse having a second polarity different than the first polarity. The memory controller may determine characteristics of the pulses to mitigate disturbances of unselected self-selecting memory cells of the memory tile.
Abstract:
A method for managing memory element failures in a memory subsystem is described. The method includes detecting, by the memory subsystem, a failed memory element in the memory subsystem and transmitting a redundant memory request based on detection of the failed memory element. The redundant memory request seeks to utilize memory storage in an external storage system in place of the failed memory element in the memory subsystem. Thereafter, the memory subsystem receives, from the external storage system, a redundant memory request confirmation, which indicates that the redundant memory request has been fulfilled and includes an address of a location in the external storage system. In response to receipt of the redundant memory request confirmation, the memory subsystem updates memory management information to map a logical address, which was previously mapped to the failed memory element, to the location in the external storage system.