Abstract:
An oil well installation (15) comprising tubing (17) arranged in a well (18), a pump (19) and actuator (20) disposed in the well, a surface controller (50) connected with the linear actuator, multiple downhole sensors (30-35) configured to sense operating parameters of the linear actuator and/or the pump, a downhole signal processor (40) configured to receive sensor data from the sensors and to output serial data, a communication cable (23) between the sensor processor and the surface controller, the communication cable having at least two paired transmission lines (25, 26), a downhole differential signal driver (41) configured to receive the serial data and to output data signals to the paired transmission lines, and a surface receiver (27) connected to the communication cable and configured to receive the signals from the differential signal driver via the paired transmission lines.
Abstract:
A linear actuator for pumping comprising a stator having an inner opening, a shaft having a plurality of permanent magnets spaced linearly in the axial direction, the shaft disposed in the stator opening and configured to reciprocate linearly in the axial direction relative to the stator, the stator comprising a first stator assembly having a plurality of pole sections spaced linearly in the axial direction and a plurality of coils disposed therebetween, a second stator assembly having a plurality of pole sections spaced linearly in the axial direction and a plurality of coils disposed therebetween, a bearing assembly positioned axially between the first stator assembly and the second stator assembly, and the bearing assembly having a width that is a function of the spacing of the plurality of pole sections of the first stator assembly and the second assembly and the spacing of the plurality of permanent magnets of the shaft.
Abstract:
A linear actuator for pumping comprising a stator having an inner opening, a shaft having a plurality of permanent magnets spaced linearly in the axial direction, the shaft disposed in the stator opening and configured to reciprocate linearly in the axial direction relative to the stator, the stator comprising a first stator assembly having a plurality of pole sections spaced linearly in the axial direction and a plurality of coils disposed therebetween, a second stator assembly having a plurality of pole sections spaced linearly in the axial direction and a plurality of coils disposed therebetween, a bearing assembly positioned axially between the first stator assembly and the second stator assembly, and the bearing assembly having a width that is a function of the spacing of the plurality of pole sections of the first stator assembly and the second assembly and the spacing of the plurality of permanent magnets of the shaft.
Abstract:
A linear motor (15) comprising a stator (16) having an opening (18), a mover (19) disposed in the opening and configured and arranged to reciprocate linearly in an axial direction (x-x) relative to the stator, the stator comprising a first pole section and a second pole section (22) stacked in the axial direction and forming a recess (26) between them for receiving annular windings, the first pole section comprising a first laminate (17a) having a first cross-sectional geometry (29) and a second laminate (17b) having a second cross-sectional geometry (30) different from the first cross-sectional geometry, and the first laminate and the second laminate stacked in the axial direction.
Abstract:
A method of assembling a shaft of a magnetic motor comprising the steps of providing a plurality of magnets (210), providing a plurality of pole pieces (212), stacking (S11) said magnets and pole pieces to form a subassembly (202) having an outer surface of a first diameter, providing a precipitation hardenable stainless steel sheet material, forming said stainless steel sheet material into a tube (S20), drawing said tube to form a precision tube having an inner surface of a second diameter (S21), said second diameter being greater than or equal to said first diameter, heat treating said precision tube to form a tubular sleeve of a Rockwell C hardness of at least about 40 and a magnetic permeability of at least about 100 (S22), and inserting said subassembly axially into said sleeve (S30), thereby forming a shaft for a magnetic motor.
Abstract:
A method of assembling a shaft of a magnetic motor comprising the steps of providing a plurality of magnets (210), providing a plurality of pole pieces (212), stacking (S11) said magnets and pole pieces to form a subassembly (202) having an outer surface of a first diameter, providing a precipitation hardenable stainless steel sheet material, forming said stainless steel sheet material into a tube (S20), drawing said tube to form a precision tube having an inner surface of a second diameter (S21), said second diameter being greater than or equal to said first diameter, heat treating said precision tube to form a tubular sleeve of a Rockwell C hardness of at least about 40 and a magnetic permeability of at least about 100 (S22), and inserting said subassembly axially into said sleeve (S30), thereby forming a shaft for a magnetic motor.
Abstract:
A deep well linear motor pump system (122) comprising a downhole linear electric motor (222) having a stator and a shaft configured to move linearly relative to the stator, a downhole pump (220) having an inlet (227), an outlet (228), and a piston coupled to the linear motor shaft, a motor driver system (318) connected with the linear motor and configured to provide drive commands to the linear motor, a surface control computer (126) connected with the motor drive system and configured to control the linear motor, a sensor system (224) communicating with the control computer and configured to sense operating parameters of the linear motor, and the sensor system comprising a synchronous serial interface encoder configured to sense position of the motor shaft and a temperature sensor configured to sense the temperature of the motor.
Abstract:
A linear motor (15) comprising a stator (16) having an opening (18), a mover (19) disposed in the opening and configured and arranged to reciprocate linearly in an axial direction (x-x) relative to the stator, the stator comprising a first pole section (21) and a second pole section (22) stacked in the axial direction and forming a recess (26) between them for receiving annular windings, the first pole section comprising a first laminate (17a) having a first cross-sectional geometry (29) and a second laminate (17b) having a second cross-sectional geometry (30) different from the first cross-sectional geometry, and the first laminate and the second laminate stacked in the axial direction.
Abstract:
A linear motor (15) comprising a stator (16) having an opening (18), a mover (19) disposed in the opening and configured and arranged to reciprocate linearly in an axial direction (x-x) relative to the stator, the stator comprising a first pole section (21) and a second pole section (22) stacked in the axial direction and forming a recess (26) between them for receiving annular windings, the first pole section comprising a first laminate (17a) having a first cross-sectional geometry (29) and a second laminate (17b) having a second cross-sectional geometry (30) different from the first cross-sectional geometry, and the first laminate and the second laminate stacked in the axial direction.
Abstract:
A linear motor (15) comprising a stator (16) having an opening (18), a mover (19) disposed in the opening and configured and arranged to reciprocate linearly in an axial direction (x-x) relative to the stator, the stator comprising a first pole section (21) and a second pole section (22) stacked in the axial direction and forming a recess (26) between them for receiving annular windings, the first pole section comprising a first laminate (17a) having a first cross-sectional geometry (29) and a second laminate (17b) having a second cross-sectional geometry (30) different from the first cross-sectional geometry, and the first laminate and the second laminate stacked in the axial direction.