Abstract:
A stretchable circuit board includes plural stretchable bases, and plural stretchable wiring portions, at least one of which is provided on each of main surfaces, facing each other, of the plural stretchable bases, in which the stretchable wiring portions provided on the main surfaces are electrically continuous with each other through a connecting portion.
Abstract:
The stretchable circuit board (100) includes: a stretchable base (10); a stretchable wiring portion (20) formed on the stretchable base (10); a reinforcement base (30) having in-plane rigidity higher than that of the stretchable base (10); a draw-out wiring portion (40) formed on the reinforcement base (30), and electrically continuous with the stretchable wiring portion (20); and an elastomer layer (50) formed on the reinforcement base (30). The reinforcement base (30) overlaps with a partial area (10a) of the stretchable base (10). An other area (10b) of the stretchable base (10) is exposed from the reinforcement base (30). The stretchable wiring portion (20) extends on the other area (10b) and over the partial area (10a). The elastomer layer (50) and the stretchable base (10) are layered and joined with each other.
Abstract:
A stretchable circuit board includes plural stretchable bases, and plural stretchable wiring portions, at least one of which is provided on each of main surfaces, facing each other, of the plural stretchable bases, in which the stretchable wiring portions provided on the main surfaces are electrically continuous with each other through a connecting portion.
Abstract:
A stretchable circuit board includes a stretchable base, a stretchable wiring portion, a reinforcement base having in-plane rigidity higher than that of the stretchable base 10, and a draw-out wiring portion. The stretchable wiring portion having stretchability is formed on a main surface located on at least one side of the stretchable base. The draw-out wiring portion is formed at least on a main surface that is one side of the reinforcement base. The main surface of the reinforcement base is overlaid with a part of an area where the stretchable wiring portion is formed, in which the main surface faces the main surface of the stretchable base. A part of the stretchable wiring portion and a part of the draw-out wiring portion are joined together, and they are electrically continuous.
Abstract:
A pressure sensing element (100) includes a support substrate (11); a sensor electrode (12) supported by the support substrate (11); a pressure sensing film (14) functionalized to be electro-conductive, at least in a portion thereof faced to the sensor electrode (12); and an insulating layer (13) which keeps the sensor electrode (12) and the pressure sensing film (14) apart from each other by a predetermined distance A, and has formed therein an opening (20) in which the sensor electrode (12) is exposed to the pressure sensing film (14), the insulating layer (13) having an aperture wall (13b) which partitions the opening (20), and an aperture end (top aperture end (13a)) faced to the pressure sensing film (14), and the insulating layer (13) being increased in height, measured from the support substrate (11), continuously towards the opening (20).
Abstract:
This invention provides a pressure sensitive element capable of suppressing dispersion in the initial load for pressure sensing among the sensor electrodes or among the pressure sensors. The pressure sensitive element has a support substrate, a sensor electrode, a pressure sensing film and an insulating layer. The pressure sensing film is arranged opposing to the sensor electrode. The insulating layer has an opening and is provided between the support substrate and the pressure sensing film. At least a part of an opening edge of the opening is fallen on the sensor electrode. An exposed part as a part of the sensor electrode is exposed inside the opening, while leaving a buried part as the other part of the sensor electrode buried under the insulating layer.
Abstract:
[Problem] Provided is a method for manufacturing a stretchable circuit board, which can facilitate positioning of an external terminal and a stretchable wiring, and increase manufacturing yield of a stretchable circuit board.[Solving Mean] A stretchable circuit board is manufactured through: a step in which an external terminal 31 is formed on a main surface 33b located on one side of a film base 33; a step in which a stretchable wiring portion 55 is formed on a main surface 53a located on one side of a stretchable base 53; and a step in which the stretchable wiring portion 55 is positioned with the external terminal 31, and pressure and heat are applied to the film base 33 and the stretchable wiring portion 55 to join them, whereby the external terminal 31 and the stretchable wiring portion 55 are connected with each other.
Abstract:
Provided is a stretchable circuit board having a sheet-like stretchable base capable of stretching and contracting, a stretchable interconnect part formed on or above at least one major surface of the stretchable base, and an external terminal connected to the interconnect part; the stretchable circuit board has a reinforcing area having in-plane rigidity higher than that of the stretchable base, and a stretchable area which remains after excluding the reinforcing area; the interconnect part is formed across a boundary part between the reinforcing area and the stretchable area; and a sheet-like stretchable auxiliary member capable of stretching and contracting is provided to the boundary part having the interconnect part formed therein.
Abstract:
Disclosed are an insulating material (high-k layer) which includes a fiber assembly mainly composed of a cellulose nanofiber, and an electroconductive metal material supported by the fiber assembly; and a passive element (capacitor) which includes a high-k layer which is composed of the insulating material, and an electroconductive part stacked on the high-k layer.
Abstract:
Disclosed is a method of manufacturing a circuit board, which includes a stand-by process setting a screen printing plate so as to be opposed with a base, where the screen printing plate has a line pattern formed therethrough, and the line pattern is configured by a plurality of dot-like through-holes discretely pierced and arrayed in a single line; a coating process coating an ink which contains a water-dispersed electroconductive paste onto the surface of the screen printing plate; and an ejection process ejecting ink dots through the dot-like through-holes onto the surface of the base, by pressing the screen printing plate into the base under sliding contact of a squeegee with the surface of the screen printing plate, and allowing the ink dots ejected out from the adjacent through-holes to fuse on the surface of the base, to thereby form a linear ink puddle.