Abstract:
A pre-equalized optical transmitter includes, a laser source; a duo-binary pre-coder circuit; a pre-equalization circuit for applying an inverse function of chromatic dispersion; at least two D/A converters; and an optical field modulator comprising at least two input terminals for an electric signal. The pre-equalized optical transmitter: converts, by the duo-binary pre-coder circuit, a digital information signal of a predetermined symbol time to be transmitted into a digital complex signal including one sampling point per symbol; equalizes, by the pre-equalization circuit, degradation in transmission of the digital complex signal; converts, by the D/A converters, the equalized digital complex signal into an analog signal; suppresses an analog signal leaking outside a Nyquist bandwidth by at least 23 dB; modulates, by the optical field modulator, light output from the laser source with the analog signal to generate a modulated optical field signal; and transmits the modulated optical field signal.
Abstract:
Provided is an optical multilevel transmission system, comprising at least one optical multilevel transmitter for transmitting an optical multilevel signal obtained and an optical multilevel receiver for receiving the optical multilevel signal. The received optical multilevel signal has a larger noise in an angular direction than in a radial direction. The optical multilevel receiver sets, in a symbol decision of the received optical multilevel signal demodulated on the complex plane, for positions of all or some of ideal signal points, a width in the angular direction of a decision area, to which each of the ideal signal points belongs and which is measured along a circumference of a circle centered at an origin and passing through a center of the each of the ideal signal points, larger than a width in the angular direction of a decision area defined based on a Euclidean distance.
Abstract:
Heretofore, it was necessary to individually locate an optical switch, an optical switch control circuit, and the like, before and after an optical transceiver that performs optical protection. As a result, costs and the space for implementation increase, and a delay in services is also caused, which were the problems.For the purpose of solving the above problems, the present invention provides a simple optical protection method used in an optical add-drop multiplexer.Add switches 105-1 through 105-N and drop switches 103-1 through 103-N for optical signals corresponding to each wavelength in an optical add-drop multiplexer 100 are made controllable independently of one another. Add switches and drop switches of the active-side and backup-side optical add-drop multiplexers are switched by optical switch control circuits 106-1 through 106-N respectively to make a detour around a failure so that the optical protection is achieved.
Abstract:
With the normal modulation method, it is difficult to construct a Hilbert transform device because it is complicated. To solve the problem, a single sideband modulated optical pulse train is generated by driving a Mach-Zehnder optical modulator for optical pulse generation with a laser source's sine wave clock signals that have been rendered 90 degrees out of phase from each other. The generated pulse train is applied to an optical modulator, modulated with an NRZ (nonreturn-to-zero) data signal, and filtered by a narrow-band optical filter to obtain one of two sidebands.
Abstract:
An optical transmission system in which influences of worsening of the waveform by SPM are canceled by setting an amount of compensation of a dispersion compensator at about 50% of a total amount of dispersion of an optical fiber transmission line so that received waveform is almost not varied, even if light intensity is varied. In the case where a plurality of dispersion compensators are used, the number of compensators is optimized by setting arrangement interval in the neighborhood of a receiving end at a small value. Further, in a transmission line, in which amounts of dispersion of optical fibers have positive and negative fluctuations, the smallest transmission distance of a transmission system is increased by effecting dispersion compensation so that an expected value of the total amount of dispersion of the transmission line is abnormal dispersion.
Abstract:
In an optical transmission system, SPM influences on the degradation of wave forms are canceled by setting an amount of compensation of a dispersion compensator at about 50% of the total amount of dispersion of an optical fiber transmission line so that a received wave form is substantially not varied, even if light intensity is varied. When a plurality of dispersion compensator are used, the number of compensators is optimized by setting the arrangement interval in the vicinity of the receiving end to a small value. Further, in a transmission line, in which amounts of dispersion of optical fibers have positive and negative fluctuations, the smallest transmission distance of a transmission system is increased by effecting dispersion compensation so that an expected value of the total amount of dispersion of the transmission line is abnormal dispersion.
Abstract:
A signal speed converting apparatus to be connected to a WDM transmission end office, comprising a first interface connected to a first optical line group, a plurality of second interfaces connected to a second optical line group, and a speed converter. The first interface has a first framer for terminating a frame in a first format received from the first optical line group and outputting an information signal extracted from the received frames as a serial signal train or parallel signal trains. The speed converter converts the output signal from the first framer into transmission signal trains each including interleaved communication frame by cyclically distributing the output signal from the first framer to a plurality of internal lines. Each of the second interfaces has a second framer for converting the communication frame received from one of the internal lines into information frame in a second format to be transmitted to the second optical line group. Management information inserting units are located between the first and second interfaces in order to insert management information to be communicated with an opposite apparatus into the transmission signal trains on the internal lines.
Abstract:
A signal speed converting apparatus to be connected to a WDM transmission end office, comprising a first interface connected to a first optical line group, a plurality of second interfaces connected to a second optical line group, and a speed converter. The first interface has a first framer for terminating a frame in a first format received from the first optical line group and outputting an information signal extracted from the received frames as a serial signal train or parallel signal trains. The speed converter converts the output signal from the first framer into transmission signal trains each including interleaved communication frame by cyclically distributing the output signal from the first framer to a plurality of internal lines. Each of the second interfaces has a second framer for converting the communication frame received from one of the internal lines into information frame in a second format to be transmitted to the second optical line group. Management information inserting units are located between the first and second interfaces in order to insert management information to be communicated with an opposite apparatus into the transmission signal trains on the internal lines.
Abstract:
Optical transmission equipment, capable of electrically adjusting the delay difference between a plurality of digital signal paths to be connected to a multilevel optical modulation unit or demodulation unit, having multiplexing circuits connected to the digital signal paths and a delay adjustment unit inserted in one of the digital signal paths to adjust delay of N-bit-parallel low-speed digital signals with the timing unit of a bit period of a high-speed serial digital signal to be outputted from multiplexing circuit.
Abstract:
It was difficult to detect a wavelength error. Further, a wavelength error of an optical add signal is accompanied by a calculation error of the number of wavelengths of a wavelength division multiplexing signal, which causes a set value of an optical signal level to become abnormal, resulting in the degradation of the optical signal. According to the present invention, part of an inputted optical add signal 118 is reflected by a mirror 117, and is thereby inputted into an optical wavelength multiplexer 105 in the reverse direction so that the optical add signal is returned to paths 115-1 through 115-16 corresponding to wavelengths λ1 through λ16. If the returned optical add signal is an optical add signal having a correct wavelength (in FIG. 1, λ16), the optical signal enters its corresponding backward direction optical detector 113-16. Accordingly, it is possible to check whether or not a wavelength of the optical add signal is correct.