Abstract:
A method using capillary force lamination (CFL) for manufacturing a high-performance optical absorber, includes: texturizing a base layer of the high-performance optical absorber, the base layer comprising one or more of a polymer film and a polymer coating; joining a surface layer of the high-performance optical absorber to the base layer, the surface layer comprising a non-woven carbon nanotube (CNT) sheet; wetting the joined surface layer and base layer with a solvent; allowing surface tension forces of the solvent to draw the non-woven CNT sheet into the base layer, thereby texturizing the surface layer; drying the joined surface layer and base layer; and treating the resulting base layer with plasma, creating the high-performance optical absorber.
Abstract:
A high-performance optical absorber includes: a texturized base layer, the base layer comprising one or more of a polymer film and a polymer coating; and a surface layer located above and immediately adjacent to the base layer, the surface layer joined to the base layer, the surface layer comprising a plasma-functionalized, non-woven carbon nanotube (CNT) sheet. A method using capillary force lamination (CFL) for manufacturing a high-performance optical absorber, includes: texturizing a base layer of the high-performance optical absorber, the base layer comprising one or more of a polymer film and a polymer coating; joining a surface layer of the high-performance optical absorber to the base layer, the surface layer comprising a non-woven carbon nanotube (CNT) sheet; wetting the joined surface layer and base layer with a solvent; drying the joined surface layer and base layer; and treating the resulting base layer with plasma, creating the high-performance optical absorber.
Abstract:
A method for manufacturing optical and microwave reflectors includes: placing an assembly comprising a resin-infiltrated tendrillar mat structure on a mandrel; placing a pre-impregnated carbon fiber (CF) lamina on top of the tendrillar mat structure; placing the assembly in a vacuum device so as to squeeze out excess resin; and placing the assembly in a heating device so as to cure the tendrillar mat structure together with the CF lamina, forming the CF laminae into a laminate that combines with the tendrillar mat structure to create a cured assembly. A reflector suitable for one or more of optical and microwave applications includes: a mandrel; a resin-infiltrated tendrillar mat structure placed on the mandrel; and a pre-impregnated carbon fiber (CF) lamina placed on top of the tendrillar mat structure.
Abstract:
A thermal interface material (TIM) using high thermal conductivity nano-particles, particularly ones with large aspect ratios, for enhancing thermal transport across boundary or interfacial layers that exist at bulk material interfaces is disclosed. The nanoparticles do not need to be used in a fluid carrier or as filler material within a bonding adhesive to enhance thermal transport, but simply in a dry solid state. The nanoparticles may be equiaxed or acicular in shape with large aspect ratios like nanorods and nanowires.
Abstract:
A thermally-conductive and mechanically-robust bonding method for attaching a metal nanowire (MNW) array to an adjacent surface includes the steps of: removing a template membrane from the MNW; infiltrating the MNW with a bonding material; placing the bonding material on the adjacent surface; bringing an adjacent surface into contact with a top surface of the MNW while the bonding material is bondable; and allowing the bonding material to cool and form a solid bond between the MNW and the adjacent surface. A thermally-conductive and mechanically-robust bonding method for attaching a metal nanowire (MNW) array to an adjacent surface includes the steps of: choosing a bonding material based on a desired bonding process; and without removing the MNW from a template membrane that fills an interstitial volume of the MNW, depositing the bonding material onto a tip of the MNW.
Abstract:
A method using capillary force lamination (CFL) for manufacturing a high-performance optical absorber, includes: texturizing a base layer of the high-performance optical absorber, the base layer comprising one or more of a polymer film and a polymer coating; joining a surface layer of the high-performance optical absorber to the base layer, the surface layer comprising a non-woven carbon nanotube (CNT) sheet; wetting the joined surface layer and base layer with a solvent; drying the joined surface layer and base layer; and treating the resulting base layer with plasma, creating the high-performance optical absorber.
Abstract:
A high-performance optical absorber is provided having a texturized base layer. The base layer has one or more of a polymer film and a polymer coating. A surface layer is located above and immediately adjacent to the base layer and the surface layer joined to the base layer. The surface layer comprises a plasma-functionalized, non-woven carbon nanotube (CNT) sheet, wherein the base layer texturization comprises one or more of substantially rectangular ridges, substantially triangular ridges, substantially pyramidal ridges, and truncated, substantially pyramidal ridges. The CNT sheet has a thickness greater than or equal to 10×λ, where λ is the wavelength of the incident light. In certain embodiments the base layer has a height above the surface layer greater than or equal to 10×λ, where λ is the wavelength of the incident light.
Abstract:
An optical absorber and method of manufacture is disclosed. A non-woven sheet of randomly-organized horizontally-oriented carbon nanotubes (CNTs) is subjected to a laser rasterizing treatment at ambient temperature and pressure. The upper surface of the sheet is functionalized by oxygen and hydrogen atoms resulting in improved absorbance properties as compared to untreated CNT sheets as well as to commercial state-of-art black paints. Laser treatment conditions may also be altered or modulated to provide surface texturing in addition to functionalization to enhance light trapping and optical absorbance properties.
Abstract:
A polygonally shaped carbon nanotube (CNT) sheet optical bellows providing enhanced stray light suppression, the polygonally shaped CNT sheet optical bellows includes: a free-standing non-woven CNT sheet; a polymer bonded to the non-woven CNT sheet; and an elastomer film bonded to the polymer film, creating a laminate film, the laminate film being rolled to form a cylinder by applying an adhesive along a bonding edge of the laminate film to adhere the bonding edge to an opposite edge of the laminate film, an outer side of the laminate film comprising diamond-shaped elements, the diamond-shaped elements being pinched, pressed, folded and collapsed in a rotating manner around a circumference of the cylinder, creating the polygonally shaped CNT sheet optical bellows.
Abstract:
An exemplary passive heat transfer apparatus is suited for transferring heat away from an electronic heat generating device to another environment. A gasket has many spaced-apart holes that are transverse to two major opposing surfaces of the gasket. A thermally conductive material is disposed within and fills the holes for conducting heat from one of the two major surfaces to the other major surface. The thermally conductive material is a nanocomposite material having nano-particles aligned substantially perpendicular to the two major opposing surfaces. The thermally conductive material as disposed in the holes has no interfacial boundaries that could adversely affect the transfer of heat.