Abstract:
A method for fabricating a multilayered metal nanowire array including providing a metal seed layer, stacking a plurality of porous templates on the seed layer so that a gap forms between each adjacent pair of templates, depositing by electroplating a metal in the pores so that the metal produces nanowires in the templates and lateral interposers in the gaps between the templates, and dissolving the templates so as to produce the multilayered nanowire array including the lateral interposers. The layers between the interposers can have the same or different thicknesses, the diameter and density of the pores in each layer can be the same or different and the metal deposited in the pores of the layers can be the same or different.
Abstract:
A microstrip transmission line comprising a dielectric substrate including a series of periodic sinusoidal undulation portions defining spaced apart peaks and troughs, where a distance between the peaks and troughs defines a period of the microstrip line, and where each peak defines a maximum height of the substrate and each trough defines a minimum height of the substrate. The transmission line further includes a conductive strip formed to a surface of the substrate so that the conductive strip follows the undulation portions. The conductive strip includes a modulation portion in a width direction of the conductive strip perpendicular to a signal propagation direction along the strip, where the modulation portion includes a minimum width portion provided at each peak and a maximum width portion provided at each trough so that a variation of a ratio between the width of the conductive strip and the height of the substrate is maximized.
Abstract:
A thermal interface material (TIM) using high thermal conductivity nano-particles, particularly ones with large aspect ratios, for enhancing thermal transport across boundary or interfacial layers that exist at bulk material interfaces is disclosed. The nanoparticles do not need to be used in a fluid carrier or as filler material within a bonding adhesive to enhance thermal transport, but simply in a dry solid state. The nanoparticles may be equiaxed or acicular in shape with large aspect ratios like nanorods and nanowires.
Abstract:
A thermally-conductive and mechanically-robust bonding method for attaching a metal nanowire (MNW) array to an adjacent surface includes the steps of: removing a template membrane from the MNW; infiltrating the MNW with a bonding material; placing the bonding material on the adjacent surface; bringing an adjacent surface into contact with a top surface of the MNW while the bonding material is bondable; and allowing the bonding material to cool and form a solid bond between the MNW and the adjacent surface. A thermally-conductive and mechanically-robust bonding method for attaching a metal nanowire (MNW) array to an adjacent surface includes the steps of: choosing a bonding material based on a desired bonding process; and without removing the MNW from a template membrane that fills an interstitial volume of the MNW, depositing the bonding material onto a tip of the MNW.
Abstract:
A method of manufacturing electronics using a nanoparticle ink printing method includes: synthesizing a phase change material (PCM) ink composition using hot injection to develop nanoparticles of the PCM; suspending the nanoparticles with a solvent; and printing a reconfigurable component using the PCM ink composition in additive manufacturing. Electronics includes: a substrate layer; an insulator layer printed on top of the substrate layer; a heater layer printed on top of the insulator layer; a barrier layer printed on top of one or more of the insulator layer and the heater layer; a phase change material (PCM) printed on top of the barrier layer; a connectivity layer printed on top of the PCM; and a passivation layer printed on top of one or more of the PCM and the connectivity layer.
Abstract:
A compressible, thermally-conductive, removable nanocomposite gasket includes: a nanocomposite foam; and a nanoparticle filler, wherein the nanocomposite foam has a filler loading of less than approximately 20%. A compressible, thermally-conductive, removable nanocomposite gasket includes: a nanocomposite foam; a nanoparticle filler; and a metallic mesh embedded in the foam wherein the nanocomposite foam has a filler loading of less than approximately 20%.
Abstract:
A thermally-conductive and mechanically-robust bonding method for attaching a metal nanowire (MNW) array to an adjacent surface includes the steps of: removing a template membrane from the MNW; infiltrating the MNW with a bonding material; placing the bonding material on the adjacent surface; bringing an adjacent surface into contact with a top surface of the MNW while the bonding material is bondable; and allowing the bonding material to cool and form a solid bond between the MNW and the adjacent surface. A thermally-conductive and mechanically-robust bonding method for attaching a metal nanowire (MNW) array to an adjacent surface includes the steps of: choosing a bonding material based on a desired bonding process; and without removing the MNW from a template membrane that fills an interstitial volume of the MNW, depositing the bonding material onto a tip of the MNW.
Abstract:
A thermally-conductive and mechanically-robust bonding method for attaching a metal nanowire (MNW) array to an adjacent surface includes the steps of: removing a template membrane from the MNW; infiltrating the MNW with a bonding material; placing the bonding material on the adjacent surface; bringing an adjacent surface into contact with a top surface of the MNW while the bonding material is bondable; and allowing the bonding material to cool and form a solid bond between the MNW and the adjacent surface. A thermally-conductive and mechanically-robust bonding method for attaching a metal nanowire (MNW) array to an adjacent surface includes the steps of: choosing a bonding material based on a desired bonding process; and without removing the MNW from a template membrane that fills an interstitial volume of the MNW, depositing the bonding material onto a tip of the MNW.
Abstract:
A method for making a thermal interface material (TIM) comprises the steps of: depositing a seed layer onto a substrate; attaching a template membrane to the substrate; depositing metal into one or more of the pores of the template membrane, substantially filling the template membrane to create a vertically-aligned metal nanowire (MNW) array comprising a plurality of nanowires that grow upward from the seed layer; and after the template membrane is substantially filled with the deposited metal, removing the template membrane, leaving the plurality of nanowires attached to the seed layer. A TIM comprises: a vertically-aligned MNW array comprising a plurality of nanowires that grow upward from a seed layer deposited on the surface of a template membrane, and the template membrane being removed after MNW growth.
Abstract:
A multilayered metal nanowire array including a plurality of stacked and separated nanowire array layers each including a plurality of vertically aligned metal nanowires, and a lateral interposer positioned in a gap between each pair of adjacent nanowire array layers and being thermally coupled to the nanowires in the adjacent layers so that the lateral interposers provide thermal conduction between the nanowire array layers and laterally across each nanowire array layer. The nanowire array layers between the interposers can have the same or different thicknesses, the diameter and density of the nanowires can be the same or different, and the nanowire metal can be the same or different.