Abstract:
A power control apparatus includes: a first conversion apparatus that applies DC/DC conversion to direct current power from a power generator for generating power using natural energy, and outputs the resultant power; a second conversion apparatus that applies DC/DC conversion to the power output from the first conversion apparatus and charges a power storage unit with the resultant power, and also applies DC/DC conversion to power from the power storage unit and discharges the resultant power; a third conversion apparatus that supplies alternating current power to a power system and an alternating current load by applying DC/AC conversion to the power output from the first conversion apparatus and/or the power discharged by the second conversion apparatus; and a controller that causes the second conversion apparatus to perform the discharge so that the power output from the third conversion apparatus is higher than power consumed by the alternating current load.
Abstract:
The present disclosure relates to a charge power control apparatus, a charge power control method, a program, and a solar power generation system, for improving charge efficiency. A solar power generation system includes a solar panel that receives sunlight to generate power, a PV power conditioner that performs DC/AC conversion of the power generated by the solar panel, and a charging AC/DC converter that performs AC/DC conversion of power output from the PV power conditioner and charges a storage battery. Voltage of the power supplied to the PV power conditioner from the solar panel is acquired while the power supplied from a power system is stopped, and a change in power supplied to the PV power conditioner from the solar panel is obtained according to the voltage. Charge power that is output from the charging AC/DC converter to charge the storage battery is adjusted based on the change in voltage.
Abstract:
A power conversion device, which includes an insulation type full bridge converter and can switch a power transmission direction at a high speed, is provided. A DC/DC converter (10) constitutes a power conversion device, which operates as a first type converter that converts a voltage within a first range applied to a first input/output terminal pair into a voltage within a second range and outputs the voltage from a second input/output terminal pair or a second type converter that converts a voltage within the second range applied to the second input/output terminal pair into a voltage within the first range and outputs the voltage from the first input/output terminal pair, as a device in which a direction of a current flowing through a winding of a transformer (TR) is switched after a magnitude of the current flowing through the winding of the transformer (TR) reaches “0.”
Abstract:
A power conversion device, which includes an insulation type full bridge converter and can switch a power transmission direction at a high speed, is provided. A DC/DC converter (10) constitutes a power conversion device, which operates as a first type converter that converts a voltage within a first range applied to a first input/output terminal pair into a voltage within a second range and outputs the voltage from a second input/output terminal pair or a second type converter that converts a voltage within the second range applied to the second input/output terminal pair into a voltage within the first range and outputs the voltage from the first input/output terminal pair, as a device that performs a predetermined state transition of the DC/DC converter (10) after waiting for a load current value of a primary or secondary side of a transformer (TR) becomes a value within a predetermined current value range.
Abstract:
The present disclosure relates to a storage battery control device that can exert better performance in a configuration in which a plurality of storage batteries are connected, a storage battery control method, a program, an electricity storage system, and a power supply system. A charge order table previously set according to a state of charge and a charge/discharge frequency of a storage battery that stores power is referred to, and based on the states of charge and the charge/discharge frequencies acquired from the storage battery provided in plural, a discharge order based on which discharge is preferentially performed with respect to the plurality of storage batteries is decided. In order to supply necessary power necessary to be output upon a request from a load, discharge power output from each of the plurality of storage batteries is set based on the decided discharge order.
Abstract:
A rechargeable battery controller is combined with a rechargeable battery and used in an existing PV system. The controller includes a DC-DC converter, which allows power to be passed between a power line and a rechargeable battery, and a control unit, which determines whether maximum power point tracking (MPPT) control using hill climbing is being performed by a PCS based on an input voltage or current value of the PCS. The control unit regulates charge/discharge power of the rechargeable battery to allow input power of the PCS to be a target value based on the input voltage and current values of the PCS while MPPT control using hill climbing is performed, and maintains, in a period during which MPPT control using hill climbing is not performed, the charge/discharge power to be the power at a beginning of the period.
Abstract:
The present disclosure relates to a charging control device, a solar power generation system and a charging control method which allow more efficient charging. The charging control device includes: a charging converter which takes electric power out of a solar panel and converts the electric power to a voltage required for charging a storage battery; and a controlling CPU which adjusts an output voltage that is outputted from the charging converter. The charging converter takes electric power out of the solar panel at two operation points where the electric power can be taken out of the solar panel with a certain output voltage, and charges the storage battery. The controlling CPU adjusts the output voltage in accordance with a voltage difference between input voltages respectively corresponding to the two operation points. The present technique is applicable, for example, to the charging control device of the solar power generation system.
Abstract:
The present disclosure relates to a storage battery control device that can exert better performance in a configuration in which a plurality of storage batteries are connected, a storage battery control method, a program, an electricity storage system, and a power supply system. A charge order table previously set according to a state of charge and a charge/discharge frequency of a storage battery that stores power is referred to, and based on the states of charge and the charge/discharge frequencies acquired from the storage battery provided in plural, a discharge order based on which discharge is preferentially performed with respect to the plurality of storage batteries is decided. In order to supply necessary power necessary to be output upon a request from a load, discharge power output from each of the plurality of storage batteries is set based on the decided discharge order.
Abstract:
A power line interface is electrically connectable to a direct-current power system including a power line. A bidirectional DC-DC converter is electrically connected to the power line interface and a battery. A controller receives a first current value measured by a first current sensor and a current command value and performs constant current control processing that controls the bidirectional DC-DC converter so that the first current value equals the current command value. The controller receives a first voltage value measured by a voltage sensor and a voltage command value and performs constant voltage control processing that controls the bidirectional DC-DC converter so that the first voltage value equals the voltage command value. The controller switches operation from the constant current control processing to the constant voltage control processing.
Abstract:
A storage battery control apparatus is provided with which a system capable of charging a storage battery using power from an electric power system and also charging the storage battery using power from a power generation system is inexpensively built. A storage battery control apparatus includes a switching control unit and a switch for connecting a CT to a current sensor connecting portion in a power generation system during a period during which a storage battery is charged using power from an electric power system, and for connecting a CT to the current sensor connecting portion during a period during which the storage battery is charged using power from the power generation system.