Abstract:
An aspect of the present invention inheres in a semiconductor device includes a semiconductor region, a source electrode and a drain electrode, which are provided on a main surface of the semiconductor region, a gate electrode exhibiting normally-off characteristics, the gate electrode being provided above the main surface of the semiconductor region while interposing a p-type material film therebetween, and being arranged between the source electrode and the drain electrode, and a fourth electrode that is provided on the main surface of the semiconductor region, and is arranged between the gate electrode and the drain electrode.
Abstract:
A device capable of bidirectional on-off switching control of an electric circuit. Included is a normally-on HEMT connected between a pair of terminals of the device. A normally-off MOSFET of relatively low antivoltage strength is connected between the HEMT and one of the pair of terminals, and another similar MOSFET between the HEMT and the other of the terminal pair. A diode is connected in inverse parallel with each MOSFET, and two other diodes are connected between the gate of the HEMT and the pair of terminals respectively. The switching device as a whole is normally off.
Abstract:
A semiconductor device having a transistor and a rectifier includes: a current path; a first main electrode having a rectifying function and arranged on one end of the current path; a second main electrode arranged on the other end of the current path; an auxiliary electrode arranged in a region of the current path between the first main electrode and the second main electrode; a third main electrode arranged on the one end of the current path apart from the first main electrode along a direction intersecting the current path; and a control electrode arranged in a region of the current path between the second main electrode and the third main electrode. The transistor includes the current path, the second main electrode, the third main electrode, and the control electrode. The rectifier includes the current path, the first main electrode, the second main electrode, and the auxiliary electrode.
Abstract:
A device capable of bidirectional on-off switching control of an electric circuit. Included is a normally-on HEMT connected between a pair of terminals of the device. A normally-off MOSFET of relatively low antivoltage strength is connected between the HEMT and one of the pair of terminals, and another similar MOSFET between the HEMT and the other of the terminal pair. A diode is connected in inverse parallel with each MOSFET, and two other diodes are connected between the gate of the HEMT and the pair of terminals respectively. The switching device as a whole is normally off.
Abstract:
A silicon-made low-forward-voltage Schottky barrier diode is serially combined with a high-antivoltage-strength high-electron-mobility transistor made from a nitride semiconductor that is wider in bandgap than silicon. The Schottky barrier diode has its anode connected to the gate, and its cathode to the source, of the HEMT. This HEMT is normally on. The reverse voltage withstanding capability of the complete device depends upon that between the drain and gate of the HEMT.
Abstract:
An aspect of the present invention inheres in a semiconductor device includes a semiconductor region, a source electrode and a drain electrode, which are provided on a main surface of the semiconductor region, a gate electrode exhibiting normally-off characteristics, the gate electrode being provided above the main surface of the semiconductor region while interposing a p-type material film therebetween, and being arranged between the source electrode and the drain electrode, and a fourth electrode that is provided on the main surface of the semiconductor region, and is arranged between the gate electrode and the drain electrode.
Abstract:
An aspect of the present invention inheres in a semiconductor device includes a semiconductor region, a source electrode and a drain electrode, which are provided on a main surface of the semiconductor region, a gate electrode exhibiting normally-off characteristics, the gate electrode being provided above the main surface of the semiconductor region while interposing a p-type material film therebetween, and being arranged between the source electrode and the drain electrode, and a fourth electrode that is provided on the main surface of the semiconductor region, and is arranged between the gate electrode and the drain electrode.
Abstract:
A silicon-made low-forward-voltage Schottky barrier diode is serially combined with a high-antivoltage-strength high-electron-mobility transistor made from a nitride semiconductor that is wider in bandgap than silicon. The Schottky barrier diode has its anode connected to the gate, and its cathode to the source, of the HEMT. This HEMT is normally on. The reverse voltage withstanding capability of the complete device depends upon that between the drain and gate of the HEMT.
Abstract:
An actuator includes a base member and an electro-mechanical transducer element including a first electrode, an electro-mechanical transducer film, and a second electrode. Further, the base member includes a thin wall part having a concave shape, the electro-mechanical transducer film is formed in a manner such that a film thickness of the electro-mechanical transducer film is gradually reduced from a center part of the electro-mechanical transducer film to both end parts of the electro-mechanical transducer film in at least one direction crossing a film thickness direction of the electro-mechanical transducer film.
Abstract:
Disclosed is a method of manufacturing an electromechanical transducer element including a first process of hydrophobizing a first area of an electrode by forming a self-assembled monolayer film; a second process of applying a sol-gel solution onto a predetermined second area of the electrode so as to produce a complex oxide; a third process of producing the complex oxide by calcining the electrode; a fourth process of acid-washing the electrode on which the complex oxide has been produced; a fifth process of hydrophobizing the first area of the acid-washed electrode by forming the self-assembled monolayer film; a sixth process of applying the sol-gel solution onto the predetermined second area; and a seventh process of producing the complex oxide by calcining the electrode.